Issue 52
Nov 2024

SCIENCE OF LIFE

sol-01-banner-4x3-v01

In a first-of-its-kind clinical trial, a team at the Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) leveraged an artificial intelligence (AI)-derived platform to guide treatment for a patient with a rare blood cancer.

Rare diseases affect fewer than 1 in 2,000 people individually. However, with over 7,000 different types identified, their global impact is significant. In the Asia Pacific region, approximately 258 million people1 have a rare disease, the highest number globally, with over 45 million2 in Southeast Asia alone. This vast number highlights significant challenges in treatment, as the diversity of this patient pool contributes to significant healthcare disparities and increased challenges in clinical trial recruitment. Additionally, within the small patient pool, each patient is different, and individual patients’ conditions change over time. This emphasises the critical need for accessible and personalised treatments for this patient population and highlights the profound challenges in developing treatments for patients with rare diseases.

 

sol-01-icon-v01
Over
45 million
people have a rare disease in Southeast Asia

Waldenström macroglobulinemia affects approximately
3 IN 1,000,000
people annually

Savings of approximately
US$ 8,000
on drug costs over 2 years of treatment

Achieving good treatment response while minimising side effects

To address the need for effective treatment for rare diseases without using large population data, researchers from the Institute for Digital Medicine (WisDM) at NUS Medicine leveraged small amounts of data from a single patient with a rare disease to guide his treatment, with promising results. Co-led by Professor Dean Ho, Director of WisDM at NUS Medicine, the team conducted a clinical trial for the patient who was diagnosed with Waldenström macroglobulinemia—a rare blood disorder affecting approximately 3 in 1,000,000 people annually—by leveraging CURATE.AI, an AI-derived platform. Unlike traditional AI models that depend on large datasets, CURATE.AI utilises small data to dynamically adjust treatment dosages based on individual patient responses.

Since the trial began in October 2021, substantial improvement in this patient’s red blood cell levels was observed, and the patient was able to avoid blood transfusions. Importantly, the patient did not suffer serious side effects from the treatment and hospital admissions were minimised.

Increasing treatment efficacy while saving costs

In the trial, the research team worked with clinicians from the National University Cancer Institute, Singapore (NCIS) to identify drug doses for the patient, based on guidance from the CURATE.AI platform. The drug doses were selected based on the patient’s own responses prospectively, making the treatment strategy a first-of-its-kind. Compared to the overall dose under the standard of care regimen, the trial’s recommended drug doses were lower and well-tolerated by the patient, demonstrating durable control of the disease. As a result, the patient was able to save approximately USD 8,000 (around SGD 10,500) on drug costs over the first two years of the treatment.

The trial with treatment recommended by CURATE-AI is ongoing and is now open for recruitment of new, suitable patients. The results collected from the first 2 years of the trial are published in the journal NPJ Digital Medicine, a Nature Portfolio journal.

Prof Ho said, “No 2 patients are alike, and even the same patient can change over time. It is essential for treatment to evolve alongside the patient. Our study highlights the effectiveness of using small data to treat extremely rare diseases—addressing the gaps where traditional big data methods fall short, and where large-scale trials are not feasible due to the limited patient population. CURATE.AI’s approach, which tailors treatment using small datasets, offers a practical solution for the urgent and challenging need of developing personalised strategies for rare diseases.” Prof Ho is also Head of the Department of Biomedical Engineering at the NUS College of Design and Engineering, and Director of the NUS N.1 Institute for Health.

Dr Sanjay de Mel, Senior Consultant in the Division of Haematology, Department of Haematology-Oncology, NCIS, and the clinical lead for the trial, added, “Achieving a good treatment response while minimising side effects is crucial when treating patients with Waldenström macroglobulinemia. Patients may differ significantly in how their bodies handle the treatment and the types of side effects they experience. A personalised approach to medication dosing is therefore required to address this inter-individual variability.”

No 2 patients are alike, and even the same patient can change over time. It is essential for treatment to evolve alongside the patient. CURATE.AI's approach, which tailors treatment using small datasets, offers a practical solution for the urgent and challenging need of developing personalised strategies for rare diseases.”

Prof Dean Ho, Director of WisDM at NUS Medicine

About CURATE.AI

The AI-derived technology platform, CURATE.AI, provides actionable N-of-1 (i.e. single patient) therapy for the entire duration of patient care. Trials are customised based on individual profiles to develop drug therapies and interventions that achieve better patient outcomes. Through adjusting drug doses dynamically according to recorded patient responses, CURATE.AI optimises treatments.

Traditionally, AI uses big data from a large number of patients to train and test an algorithm. The algorithm is then validated again using data from a different patient population. This can lead to important advances in AI. However, in the absence of prospective implementation, or real-world use of the algorithm to guide patient care, this can lead to prediction without implementation, resulting in the algorithm remaining theoretical.

The approach of CURATE.AI is different—it is one of the few algorithms in the world where small data is used to guide actual treatment prospectively. As part of the WisDM team’s clinical trials, clinicians approve and reduce doses given to patients based on recommendations from this small data platform. As CURATE.AI works with single patient data, it overcomes the need for large patient populations—which often result in non-personalised patient trial designs and may not be practical in treating rare diseases where large pool of data is unavailable.

In a previous pilot clinical study conducted in collaboration with a US-based hospital, a patient with advanced prostate cancer was recommended a 50% dose reduction of an investigational inhibitor drug for increased efficacy. The patient subsequently resumed an active lifestyle as the lower dose also proved to be more tolerable. Another patient in Singapore with advanced cancer who was prescribed a reduced dose of nab-paclitaxel saw his lung tumour shrink and the progression of his cancer stopped. This allowed the patient to continue treatment for a much longer duration compared to most patients who are given this drug.

A graph explaining how the WisDM team tailors cancer therapy for life-changing outcomes, based on recommendations derived from the CURATE.AI platform

A graph explaining how the WisDM team tailors cancer therapy for life-changing outcomes, based on recommendations derived from the CURATE.AI platform (Credit: NUS Yong Loo Lin School of Medicine)

Light bulb icon

Did you know?

The trial with treatment recommended by CURATE-AI is ongoing and open for recruitment of new, suitable patients.

 

  • https://www.asiapathways-adbi.org/2020/07/rare-diseases-asia-pacific-must-be-tackled-too/.

  • https://ojrd.biomedcentral.com/articles/10.1186/s13023-016-0460-9.

More from this issue

sol-02-banner-v01-4x3