Affiliations
Associate Professor, Department of Biochemistry, Yong Loo Lin School of Medicine, NUS.
Supervisor, NUS Graduate School for Integrative Sciences and Engineering (NGS), NUS.
Editorial Board, Frontier of Cell & Developmental Biology.
Editorial Board, Scientific Reports.
Associate Editor, Gene.
Education
Degree and Institution | Year(s) |
BSc (Hons): National University of Singapore (NUS), Faculty of Science | 1992 |
M.Sc.: Kyoto University, Faculty of Science, Japan | 1999 |
Ph.D.: Kyoto University, Faculty of Science, Japan | 2003 |
Professional Experience
Position and Institute | Year(s) |
Associate Professor, Department of Biochemistry, Yong Loo Lin School of Medicine, NUS | 2019– Present |
Assistant Professor, Department of Biochemistry, Yong Loo Lin School of Medicine, NUS | 2009–2018 |
Post-doctoral Research Fellow, National Cancer Institute, National Institutes of Health, USA | 2004–2009 |
Japan Society for the Promotion of Science Post-doctoral Fellow, Kyoto University, Japan | 2003–2004 |
Assistant Research Officer, Institute of Molecular and Cell Biology, Singapore | 1992–1996 |
Research Interest
Maintaining the integrity of the genome is essential for the survival of a cell and genomic instability is associated with many human diseases including cancers. A cell ensures the integrity of its genome with an intricate interplay of epigenetic mechanisms to safeguard nuclear processes, including chromosome segregation, repair of DNA damage lesions and gene expression. Our lab aims to investigate the epigenetic mechanisms at the molecular level by:
* Identifying and characterizing factors that epigenetically control essential chromatin functions that have direct implication to genomic stability.
* Elucidating how different epigenetic mechanisms interplay to control faithful inheritance of chromatin information through the cell cycle.
* Investigating the genetic and epigenetic regulation of functional sub-nuclear compartments.
Our lab employs the powerful genetics, cytology and biochemistry of the model organism fission yeast to address these important issues. Results obtained will be extended to elucidate epigenetic mechanisms operating in the mammalian cells, to facilitate the development of therapy for human diseases and cancers.
Selected Publications
- Int J Mol Sci. 2020 21(17):E6175. doi: 10.3390/ijms21176175. PMID: 32859127
- (2020) cGAS-STING pathway in oncogenesis and cancer therapeutics. (2020) Oncotarget. 2020 11(30):2930-2955. doi: 10.18632/oncotarget.27673. PMID: 32774773
- Regulation of centromeric heterochromatin in the cell cycle by phosphorylation of histone H3 tyrosine 41. Curr Genet. 2019 65(4):829-836. doi: 10.1007/s00294-019-00962-2. PMID: 30963244
- Lim K.K. and Chen E.S.* (2018) Systematic quantification of GFP-tagged protein foci in Schizosaccharomyces pombe nuclei. Bio-Protocol [Accepted]
- Ren B., Sayed A.M.M., Tan H.L., Mok Y.K.* and Chen E.S.* (2018) Identifying protein interactions with histone peptides using bio-layer interferometry. Bio-Protocol 8, e3012.
- A Rahaman S.N., Mat Yusop J., Mohamed0Hussein Z.A., Aizat W.M., Ho K.L., The A.H., Waterman J., Tan B.K., Tan H.L., Li A.Y., Chen E.S. and Ng C.L. (2018) Crystal structure and functional analysis of human C1ORF123. PeerJ 6, e5377.
- Lim K.K., Nguyen T.T.T., Li A.Y., Yeo Y.P. and Chen E.S.* (2018) Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylating damage in fission yeast. Nucleic Acids Research 46, 5061-5074
- Tan H.L., Lim K.K., Yang Q., Fan J.S., Sayed A.M.M., Low L.S., Ren B., Lim T.K., Lin Q., Mok Y.K., Liou Y.C. and Chen E.S.* (2018) Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Research 46, 1167-1179.
- Ren B., Tan H.L., Nguyen T.T.T., Sayed A.M.M., Ying L., Mok Y.K., Yang H. and Chen E.S.* (2018) Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Research 46, 189-202.
- Chen E.S.* (2018) Targeting epigenetics using synthetic lethality in precision medicine. Cellular & Molecular Life Sciences 75, 3381-3392.
- Seah K.S., Loh J.Y., Nguyen T.T.T., Tan H.L., Hutchinson P.E., Lim K.K., Dymock B.W., Long Y.C., Lee E.J.D., Shen H,M. and Chen E.S.* (2018) SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. Experimental Cell Research 370, 283-291.
- Ng C.T., Yip G.W.C., Chen E.S., Poh W.Y.R., Bay B.H. and Yung L.Y.L. (2018) Gold nanoparticles induce serum amyloid A 1-Toll-like receptor 2 mediated NF-κB signaling in lung cells in vitro. Chemico-Biological Interactions 289, 81-89.
- Lee S.Q., Tan T.S., Kawamukai M. and Chen E.S.* (2017) Cellular factories for coenzyme Q10 production. Microbial Cell Factories 16, 39.
- Jackson R.A., Nguyen M.L., Barrett A.N., Tan Y.Y., Choolani M.A.* and Chen E.S.* (2016) Synthetic combinations of missense polymorphic genetic changes underlying Down syndrome susceptibility. Cellular & Molecular Life Sciences 73, 4001-4017.
- Jackson R.A., Wu J.S., and Chen E.S.* (2016) C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Division 11, 2
- Nguyen T.T., Lim Y.J., Fan M.H.M., Jackson R.A., Lim K.K., Ang W.H., Ban K.H., and Chen E.S.* (2016) Calcium modulation of doxorubicin cytotoxicity in yeast and human cells. Genes to Cells 21, 226-240.
- Jackson R.A., and Chen E.S.* (2016) Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacology & Therapeutics 162, 69-85.
- Nguyen T.T., Chua J.K.K., Seah K.S., Koo S.H., Yee J.Y., Yang E.G., Lim K.K., Pang S.Y.W., Yuen A., Zhang L., Ang W.H., Dymock B., and Chen E.S.* (2016) Predicting chemotherapeutic drug combinations through gene network profiling. Scientific Reports 5, 18658.
- Li C., Zhang Y., Yang Q., Ye F., Sun S.Y., Chen E.S., and Liou Y.C. (2016) NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity. Scientific Reports 6, 18773.
- Lim K.K., Ong T.Y., Tan Y.R., Yang E.G., Ren B.B., Seah K.S., Yang Z., Tan T.S., Dymock B.W., and Chen E.S.* (2015) Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast. Scientific Reports 5, 15064.
- Tang M.Y., Guo H., Nguyen T.T., Low L.S., Jackson R.A., Yamada T. and Chen E.S.* (2015) Two fission yeast high mobility group box proteins in the maintenance of genomic integrity following doxorubicin insult. Gene 562, 70-75.
- Nguyen T.T., Lim J.S., Tang R.M., Zhang L. and Chen E.S.* (2015) Fitness profiling links topoisomerase II regulation of centromeric integrity to doxorubicin resistance in fission yeast. Scientific Reports 5, 8400.
- Tay Z., Koo S.H., Nguyen T.T., Tan T.S., Chen M.L., Chin C.F., Lim K.K., Ang W.H., Bay B.H., Lee E.J., and Chen E.S.* (2014) P-glycoprotein and vacuolar ATPase synergistically confer anthracycline resistance to fission yeast and human cells. Current Medicinal Chemistry. 21, 251-260.
- Tay Z., Eng R.J., Sajiki K., Lim K.K., Tang M.Y., Yanagida M., and Chen E.S.* (2013) Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast. PLoS ONE vol 8, e55041.
- Reyes-Turcu F.E., Zhang K., Zofall M., Chen E.S., and Grewal S.I.S. (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nature Structural & Molecular Biology 18, 1132-1138.
- Cam H.P., Chen E.S., and Grewal S.I.S. (2009) Transcriptional scaffolds for heterochromatin assembly. Cell 136, 610-614
- Chen E.S., K. Zhang, Nicholas E., Cam H.P., Zofall M., and Grewal S.I.S. (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734-737.
- Murakami H., Goto D.B., Toda T., Chen E.S., Grewal S.I., Martienssen R.A. and Yanagida M. (2007) Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS ONE 2, e317.
- Cam H.P., Sugiyama T., Chen E.S., Chen X., FitzGerald P.C., and Grewal S.I.S. (2005) Comparative analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genetics 37, 809-819.
- Chen E.S., Sutani T., and Yanagida M. (2004) Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proceedings of the National Academy of Sciences USA 101, 8078-8083.
- Chen E.S., Yanagida M., and Takahashi K. (2003) Does a GATA factor makes the bed for centromeric nucleosomes? Cell Cycle 2, 277-278
- Chen E.S., Saitoh S., Yanagida M., and Takahashi K. (2003) A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Molecular Cell 11, 175-187.
- Takahashi K., Chen E.S., and Yanagida M. (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215-2219.