

Neoplasia

Clinical workflow for cancer diagnosis:

- 1. Biopsy performed → tissue sent to patho lab → pathologist ascertains if malignant → clinician decides on treatment
- 2. After surgical excision (if done) → pathologist examines the removed tumour to decide on grade and local stage → multidisciplinary team decides on further treatment (e.g. chemotherapy)

Definition

Neoplasm: An abnormal mass of tissue, the growth of which exceeds, and is uncoordinated with that of the normal tissues and persists in the same excessive manner after cessation of the stimuli which evoked the change.

Characteristics of Benign VS Malignant tumours

Characteristics of Benign VS Manignant tumours				
Benign	Malignant			
Appearance and behaviour				
Gross and microscopic features	Gross and microscopic features			
"innocent"	abnormal			
Remains localized – does NOT	Locally invasive			
invade.				
No metastasis	Metastasis (e.g. via vessels)			
Treatment				
Amenable to local surgical	Requires surgical			
removal	excision/radio/chemo			
Prognosis/Outcome				
Patient generally survives.	Death and morbidity, cachexia.			
However can cause significant	(often)			
morbidity through local effects				
e.g. brain tumour compression				

Nomenclature on tumours – how to name tumours

Tissue Type	Benign	Malignant	
Epithelial	"-oma"	" - carcinoma"	
Glandular	Adenoma (eg. Tubular adenoma of colon)	Adenocarcinoma (eg. Colon adenocarcinoma)	
Squamous	Squamous papilloma	Squamous cell carcinoma	
Mesenchymal	"-oma"	"- sarcoma"	
Bone (osteo-)	Osteoma	Osteosarcoma	
Blood vessels Lymph vessels	Haemangioma; Lymphangioma	Angiosarcoma Lymphangiosarcoma	
Smooth muscle	Leiomyoma	Leiomyosarcoma	
Skeletal muscle	Rhabdomyoma	Rhabdomyosarcoma	
Cartilage	Chondroma	Chondrosarcoma	
Fat	Lipoma Liposarcoma		

Appearance - Gross Morphology

Video/mindmap:

https://medicine.nus.edu.sg/pathweb/pathology-demystified/neoplasia/i-what-is-neoplasia/

Feature	Benign	Malignant		
Shape	Well-circumscribed, rounded, may be encapsulated	Irregular, spiculated, non- encapsulated		
Margins	Sharply demarcated, smooth	Sharply demarcated or ill-defined		
Cut surface – necrosis	Usually absent	May be present (pale geographic areas) – rapid growth causes outstripping of blood supply		
Cut surface – haemorrhage	Usually absent	May be present (new small, fragile& immature vessels rupture easily)		
Local invasion of adjacent structures	Absent	May be present – invade into adjacent organs (eg. Colon tumor into bladder; Renal cell carcinom invades into neighbouring renal of major vessels)		
Evidence of spread to regional lymph nodes	Absent	May be present – tumour deposits in enlarged regional lymph nodes		
Evidence of spread to distant organ sites ie Metastasis	Absent	May be present – tumour deposits at sites NOT of tissue origin (eg. Prostate adenocarcinoma in spinal vertebrae)		

Appearance – Microscopic (often related to tumour grade)

(More: Papa Robbins 9th edition page 268-272)

Feature	Benign	Malignant	
Architecture of cell groupings	Well-differentiated, regular structures closely resembling normal tissue (eg. Tubular adenoma with well-formed colonic crypts; Thyroid follicular adenoma with well-formed follicular structures)	Poorly-differentiated, irregular structures[eg. Irregular glands in adenocarcinoma of the colon almost unrecognizable from normal glands.) Cells showing features of malignancy – eg. Nuclear enlargement, irregular nuclear membranes, raised N.C ratios (nuclear / cytoplasmic), multiple & prominent nucleoil, nuclear pleomorphism (nuclear are of significantly differing sizes and shapes)	
Cytomorphology	Bland cells closely resembling tissue of origin		
Mitoses	Few in number	Frequently seen (measured as mitotic counts per 10 high power fields)	
Necrosis	Absent	May be present	
Lymphovascular tumour emboli	Absent	May be present – tumour deposits within small vessels → these can then give rise to nodal or distant metastases	
Perineural invasion	Absent	May be present	

Pathogenesis

Six characteristics of cancer cells:

- 1. Self-sufficient in growth factors
- 2. Insensitive to inhibitory signals
- 3. Resistant to apoptosis
- 4. Immortal
- 5. Angiogenesis
- 6. Able to invade and metastasize

Requires multi-step genetic alterations to overcome **multiple protective mechanisms**:

- (1) Cell cycle regulatory checkpoints
- (2) Tumour suppressing mechanisms
- (3) Apoptosis (cell death) &
- (4) DNA repair mechanisms

Pathogenesis Video/Mindmap:

https://medicine.nus.edu.sg/pathweb/pathology-demystified/neoplasia/ii-how/

Examples of genes involved:

PROTO-ONCOGENES

Function		Gene	Protein	encoded	Tumours
1.Growth factors		VEGF	Vascula growth	r endothelial factor	Kaposi's sarcoma
2. Growth factor recep	tors	HER2	Human 2	EGF Receptor	Breast cancer
3. Signal transduction		KRAS	Ras pro	tein	Colon adenocarcinoma
4. Transcriptional activatorss		MYC	c-MYC transcription factors		Small cell lung cancer, B-cell lymphomas
5. Regulators of cell cycle checkpoint (G1-5 phase transition)		CDK4 Cyclins	Cyclin-dependent kinase 4 Cyclin D protein		Melanoma, Glioblastoma (brain tumour) Mantle cell (B cell) lymphoma, breast carcinoma
2. Inhibitors of cell cycle regulation	RB	The process		Familial retinoblastom	Retinoblastoma, Bladder cancer, Small cell lung cancer
3. Enablers of genomic stability	p53	p53 protein (regulates cell cycle, promote apoptosis)		Li-Fraumeni Syndrome	Sarcoma Breast cancer Leukaemia
4. DNA repair factors	BRCA1 &2	BRCA pr	otein	Familial breast	Breast cancer,

(DNA repair)

Colon cancer

Mechanisms of genetic aberrations -

Kindly refer to notes/robbins textbook for more details. Inherited genetic aberration

- Inherited cancer syndromes, familial cancers

"Acquired" genetic aberration

- Aging Accumulation of gene mutations over the years
- Physical injury Radiation / radiotherapy
- Chemical carcinogens Tobacco, Asbestos etc
- $\hbox{-} \ {\sf Biological-Chronic\ inflammation\ (Chronic\ liver\ cirrhosis:}$

Hepatocellular carcinoma)

- Viral integration into host genome can cause: oncogene expression, tumour suppressor gene inhibition, drive polyclonal proliferation of lymphocytes leading to increased risk of acquiring genetic mutations which contribute to neoplastic transformation.

Ebstein-Barr Virus – Hodgkin lymphoma, Burkitt lymphoma, Nasopharyngeal CA;

Human Papilloma Virus – Squamous cell carcinoma of the uterine cervix

- Bacterial (Helicobactor pylori: Gastric lymphoma)

Effects of Neoplasia

Clinical Effects Video/Mindmap:

https://medicine.nus.edu.sg/pathweb/pathology-demystified/neoplasia/iii-clinical-effects-of-neoplasms/

ocal/Mechanica

Ulceration, perforation eg. Gastrointestinal tumours

Bleeding

Torsioneg. Ovarian teratoma causing ovarian torsion

Obstruction

Compression eg. Pituitary adenoma compressing on optic chiasm \Rightarrow visual field defects; Raised intracranial pressure from intracranial mass

Tissue destruction (primary or metastatic tumour) eg. bone marrow replaced by leukaemia cells

Endocrine

Endocrine tumour producing excessive hormones. Eg. Pituitary tumour and growth hormone;

Phaeochromocytoma producing catecholamines Loss of function by compression / destruction

Paraneoplastic syndrome eg. Lung squamous cell CA/small cell CA producing Adrenocorticotropic Stimulating Hormone (ACTH), glucagon, insulin etc.

Cytokine related – TNF, IL-1 Progressive loss of fat/lean body mass due to proteolysis-inducing factor

Anorexia due to excessive cytokine release by tumour and host cell

Anaemia with profound weakness due to autoimmunity or excessive bleeding at tumour site

Prognosis (Malignant tumours)

Video/Mindmap: https://medicine.nus.edu.sg/pathweb/pathology-demystified/neoplasia/iii-clinical-effects-of-neoplasms/

Stage and Grade are parameters used to assess clinical aggressiveness.

Stage - *size* and/or *extent* of the tumour growth

Tumour stage essentially refers to the size and/or extent of the tumour growth. Clinical findings, radiological imaging (CT scans, MRI, PET scans etc), intra-operative surgical findings and pathology reports of excised tumours are used to stage tumours. The AJCC TNM (American Joint Committee on Cancer) staging system is widely used. Different tumours have different TNM staging systems according to site and /or tissue of origin.

Grade - reflects the **degree of differentiation** of the tumour How well the tumour cells resemble the tissue of origin. The closer the resemblance, the lower the grade. In high grade tumours, the tumour cells appear very abnormal and are hard recognise as a certain cell type

Tumour grade is thus always assessed MICROSCOPICALLY (by the pathologist)

Important Resources – do not forget:

Quizzes and Media Gallery:

https://medicine.nus.edu.sg/pathweb/pathology-demystified/neoplasia/mediagallery/

 Know how to describe POTS/tumours grossly, distinguish grossly between benign and malignant, and appreciate the histological characteristics of benign and malignant tumours.