
www.thelancet.com/digital-health   Vol 3   January 2021	 e29

Articles

Lancet Digit Health 2021; 
3: e29–40

See Comment page e2

*Contributed equally

†Contributed equally

Singapore Eye Research 
Institute, Singapore National 
Eye Centre, Singapore 
(Y-C Tham PhD, L Zhang PhD, 
J H L Goh BEng, T H Rim MD, 
S Nusinovici PhD, H Hamzah BSc, 
M-L Chee BSc, R Husain MD, 
Prof E Lamoureux PhD, 
C Sabanayagam PhD, 
Prof T Aung MD, Y Liu PhD, 
Prof T Y Wong MD, 
Prof C-Y Cheng MD); Duke-NUS 
Medical School, Singapore 
(Y-C Tham, T H Rim, S Nusinovici, 
R Husain, Prof E Lamoureux, 
C Sabanayagam, 
Prof J J Wang PhD, Prof T Aung, 
Y Liu, Prof T Y Wong, 
Prof C-Y Cheng); Institute of 
High Performance Computing, 
A*STAR, Singapore 
(A Anees MSc, G Tjio MSc, 
S Li PhD, X Xu PhD, R Goh PhD, 
Y Liu); School of Chemical and 
Biomedical Engineering, 
Division of Bioengineering, 
Nanyang Technological 
University, Singapore 
(J H L Goh); Department of 
Ophthalmology and Visual 
Sciences, The Chinese University 
of Hong Kong, Hong Kong 
Special Administrative Region, 
China (F Tang PhD, 
C Y-L Cheung PhD); Beijing 
Institute of Ophthalmology, 
Beijing Ophthalmology and 
Visual Science Key Lab, 
Beijing Tongren Eye Center, 
Beijing Tongren Hospital, 
Capital Medical University, 
Beijing, China (Y X Wang MD); 
Suraj Eye Institute, 
Nagpur, India (V Nangia MD); 
Department of 
Ophthalmology, Medical 
Faculty Mannheim of the 
Ruprecht-Karis-University 
Heidelberg, Mannheim, 
Germany (Prof J B Jonas MD); 
Centre for Vision Research, 

Referral for disease-related visual impairment using retinal 
photograph-based deep learning: a proof-of-concept, model 
development study
Yih-Chung Tham*, Ayesha Anees*, Liang Zhang, Jocelyn Hui Lin Goh, Tyler Hyungtaek Rim, Simon Nusinovici, Haslina Hamzah, Miao-Li Chee, 
Gabriel Tjio, Shaohua Li, Xinxing Xu, Rick Goh, Fangyao Tang, Carol Yim-Lui Cheung, Ya Xing Wang, Vinay Nangia, Jost B Jonas, Bamini Gopinath, 
Paul Mitchell, Rahat Husain, Ecosse Lamoureux, Charumathi Sabanayagam, Jie Jin Wang, Tin Aung, Yong Liu†, Tien Yin Wong†, Ching-Yu Cheng†

Summary
Background In current approaches to vision screening in the community, a simple and efficient process is needed to 
identify individuals who should be referred to tertiary eye care centres for vision loss related to eye diseases. The 
emergence of deep learning technology offers new opportunities to revolutionise this clinical referral pathway. We 
aimed to assess the performance of a newly developed deep learning algorithm for detection of disease-related visual 
impairment.

Methods In this proof-of-concept study, using retinal fundus images from 15 175 eyes with complete data related to 
best-corrected visual acuity or pinhole visual acuity from the Singapore Epidemiology of Eye Diseases Study, we first 
developed a single-modality deep learning algorithm based on retinal photographs alone for detection of any disease-
related visual impairment (defined as eyes from patients with major eye diseases and best-corrected visual acuity of 
<20/40), and moderate or worse disease-related visual impairment (eyes with disease and best-corrected visual acuity 
of <20/60). After development of the algorithm, we tested it internally, using a new set of 3803 eyes from the Singapore 
Epidemiology of Eye Diseases Study. We then tested it externally using three population-based studies (the Beijing Eye 
study [6239 eyes], Central India Eye and Medical study [6526 eyes], and Blue Mountains Eye Study [2002 eyes]), and two 
clinical studies (the Chinese University of Hong Kong’s Sight Threatening Diabetic Retinopathy study [971 eyes] and 
the Outram Polyclinic Study [1225 eyes]). The algorithm’s performance in each dataset was assessed on the basis of the 
area under the receiver operating characteristic curve (AUC).

Findings In the internal test dataset, the AUC for detection of any disease-related visual impairment 
was 94·2% (95% CI 93·0–95·3; sensitivity 90·7% [87·0–93·6]; specificity 86·8% [85·6–87·9]). The AUC for moderate or 
worse disease-related visual impairment was 93·9% (95% CI 92·2–95·6; sensitivity 94·6% [89·6–97·6]; 
specificity 81·3% [80·0–82·5]). Across the five external test datasets (16 993 eyes), the algorithm achieved AUCs ranging 
between 86·6% (83·4–89·7; sensitivity 87·5% [80·7–92·5]; specificity 70·0% [66·7–73·1]) and 93·6% (92·4–94·8; 
sensitivity 87·8% [84·1–90·9]; specificity 87·1% [86·2–88·0]) for any disease-related visual impairment, and the AUCs for 
moderate or worse disease-related visual impairment ranged between 85·9% (81·8–90·1; sensitivity 84·7% [73·0–92·8]; 
specificity 74·4% [71·4–77·2]) and 93·5% (91·7–95·3; sensitivity 90·3% [84·2–94·6]; specificity 84·2% [83·2–85·1]). 

Interpretation This proof-of-concept study shows the potential of a single-modality, function-focused tool in identifying 
visual impairment related to major eye diseases, providing more timely and pinpointed referral of patients with 
disease-related visual impairment from the community to tertiary eye hospitals.
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Introduction
Visual impairment is a major public health problem.1 It 
is associated with reduced quality of life and increased 
risk of frailty and mortality.2–4 Globally in 2020, an 
estimated 553 million people had a visual impairment 
and 43 million were blind.5 40% of visual impairment is 
related to refractive error (typically myopia) that 
requires the provision of spectacles in community 
settings;6 however, the remaining 60% of cases cannot 
be corrected with spectacles and require assessment, 
diagnosis, treatment, and possibly surgery in eye-care 

settings led by ophthalmologists.6 These 60% of people 
with visual impairment can be referred to as having 
disease-related visual impairment (ie, substantial loss 
of vision caused by an eye disease, and unrelated to 
refractive error).1,6 The leading causes of disease-related 
visual impairment (eg, cataract, diabetic retinopathy, 
age-related macular degeneration, and glaucoma) are 
typically age related and are thus increasing in numbers 
globally. If detected early, these conditions can be 
treated, thus preventing or slowing development of 
vision loss.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(20)30271-5&domain=pdf
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To address the burden of visual impairment, WHO 
recommends annual vision screening for individuals 
aged 60 years and older,7 and some high-income 
countries have already implemented annual vision 
screening for older people in the community.8–13 
Nevertheless, strategies and models for simple and 
efficient screening and referral remain key challenges 
for sustainable implementation of these screening 
programmes. Most traditional models of vision 
screening in the community rely on a visual acuity chart 
test with a pinhole to identify people who should be 
referred for disease-related visual impairment.14–16 
However, such models have inherent limitations. For 
instance, although the pinhole visual acuity test is 
commonly thought to be a quick measure of vision level 
and can be done by a nurse or layperson, it has poor 
reliability and repeatability,17,18 with inconsistencies in 
documentation of results among testers.19 Importantly, 
suboptimal pinhole visual acuity results are only an 
estimate to indicate potential disease-related visual 
impairment but do not definitively confirm the presence 
of eye disease, thus often resulting in a high proportion 
of unnecessary false positive referrals.18,20,21 A second 
model used in some countries is to add retinal 
photography22,23 or other methods such as air-puff tono
metry (for intraocular pressure measurement),14 to 

identify eye disease. In particular, adding retinal 
photography offers the advantage of ascertaining the 
presence of disease by providing direct visualisation of 
the fundus. However, assessment of retinal photographs 
requires highly trained personnel (ie, optometrists or 
graders), which restricts feasibility and sustainability of 
current screening programmes with retinal 
photography.14,24,25

Taken together, pathways in current screening ap
proaches to identify and refer disease-related visual 
impairment are not efficient. Furthermore, in 
community or national screening programmes, the 
pitfalls of over-referring patients with mild or early 
disease (especially those with normal vision), who might 
not require immediate treatment in the short term, need 
to be avoided. Additionally, over-referral from 
community screenings might further overwhelm the 
tertiary health system. Hence, a need exists for a new 
function-focused tool that enables more efficient 
identification and referral of only necessary cases (ie, 
people with major eye disease and substantial visual 
impairment) to tertiary eye hospitals to reduce the 
burden on health systems. To address this gap, we 
designed and tested a novel single-modality deep 
learning algorithm, using retinal photography alone, to 
identify referable disease-related visual impairment.
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Research in context

Evidence before this study
We searched PubMed for articles published in English from 
database inception until Aug 14, 2020, about the use of deep 
learning and retinal imaging for community-based vision 
screening, using the search terms “deep learning (DL)”, “visual 
impairment”, “screening”, “community”, AND “retinal imaging”. 
The studies identified suggest that previous work mainly 
focused on algorithms for detection of specific (or narrow-
spectrum) eye diseases, such as diabetic retinopathy, age-
related macular degeneration, and glaucoma, based on retinal 
photographs. Previous deep learning algorithms were designed 
to detect the presence of specific eye diseases without taking 
into account the visual function status (ie, whether there was 
substantial visual impairment), and thus might instead identify 
early diseases with normal vision (ie, early cataract, early 
age-related macular degeneration) that do not require 
immediate treatment, potentially causing over-referral tertiary 
hospitals. Furthermore, in the context of community screening 
and given that disease-related visual impairment might be 
attributed to multiple eye diseases, a so-called blanket-style 
algorithm that can broadly detect eyes with one or multiple 
diseases with substantial visual loss would be more efficient. 
Hence, a need exists for a new function-focused tool that 
enables more efficient identification and referral of only 
necessary cases (ie, people with eye disease and substantial 
visual impairment) to tertiary eye hospitals, to reduce the 
burden on finite health system resources.

Added value of this study
In this study, we developed a single-modality, retinal 
photograph-based deep learning algorithm to detect 
disease-related visual impairment, using a total of 15 175 eyes 
from a multiethnic Asian population-based eye study. We also 
did independent validation of the algorithm using datasets 
of eyes from three other population-based studies and 
two clinic-based studies (total of 16 963 eyes), which generally 
showed that the algorithm had good performance. To our 
knowledge, this is the first study to show the use of a 
single-modality deep learning algorithm, using only a single 
macular-centred retinal photograph, for identification and 
referral of eyes with disease-related visual impairment. Based 
on saliency maps, we found that the regions probably used 
by the algorithm were congruent with pathological signs 
typically associated with major age-related eye diseases. 
Hence, the unique design of this algorithm enables it to 
potentially be used as an efficient automated referral tool 
in community screening.

Implications of all the available evidences
Real-world validation is required to further determine the 
accuracy and clinical utility of this algorithm. However, with 
further validation, our algorithm could be deployed as an 
automated tool for identifying referable disease-related visual 
impairment in the community, allowing potentially more 
timely and accurate referral of such cases to tertiary eye centres.
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Methods
Study design and population
In this proof-of-concept study, we developed and tested 
(internally and externally) a deep learning algorithm using 
over 30 000 retinal photographs. First, we used clinical data 
and retinal photographs from the Singapore Epidemiology 
of Eye Diseases (SEED) study.26–28 Once we had developed 
and internally tested our algorithm, we further validated it 
using five external independent datasets. We used 
three population-based studies: the Beijing Eye study 
(BES),29 Central India Eye and Medical study (CIEMS),30 
and Blue Mountains Eye Study (BMES);31 and two clinical 
studies: the Chinese University of Hong Kong’s Sight 
Threatening Diabetic Retinopathy study (CUHK-STDR)32 
and the Outram Polyclinic Study (OPS).33 Notably, the BES, 
CIEMS, and BMES used best-corrected visual acuity 
measurements based on subjective refraction done by 
qualified optometrists;27–31 whereas the CUHK-STDR and 
OPS used pinhole visual acuity measurements. Details of 
these studies are further described in the appendix 
(pp 23–24).

Y-CT and HH extracted data and images for SEED, JBJ 
extracted data and images for BES and CIEMS, BG 
extracted data and images for BMES, FT extracted data 
and images for CUHK-STDR, and HH extracted data and 
images for OPS. Across the development and testing 
datasets, study participants with incomplete or missing 
data related to best-corrected visual acuity or pinhole 
visual acuity were excluded. We only used macular-
centred retinal photographs in this study (appendix p 10). 
In instances where multiple photographs were available 
for the same eye, only one photograph with the best 
quality was selected. Retinal photographs with artefacts 
due to eye movement, blinking, or extremely small pupil 
(thus restricted view of the fundus) were also excluded. 
Image quality was assessed by manual inspection by the 
respective study representatives. Final adjudication was 
done by Y-CT and JHLG. Further details on image 
exclusion are in the appendix (pp 1, 24).

Different retinal cameras were used in each study; 
however, the manufacturer overlapped in some studies. In 
SEED, BES, and BMES the retinal cameras used were 
manufactured by Canon (Tokyo, Japan), in CUHK-STDR 
and OPS they were manufactured by Topcon (Tokyo, 
Japan), and in CIEMS they were manufactured by ZEISS 
(Oberkochen, Germany). Details of the resolution and field 
of view of each retinal camera is in the appendix (p 24).

For the development and internal test dataset, we 
randomly distributed (8:2) the SEED dataset (N=9747; 
18 978 eyes) into a development dataset (n=7793; 
15 175 eyes) and an internal test dataset (n=1954; 
3803 eyes). To prevent overfitting of the model, we divided 
the datasets at the participant level to ensure no 
overlapping of data from the same individual across the 
development dataset and internal test dataset. We 
followed the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis 

(TRIPOD) reporting guidelines.34 Participants’ written 
informed consent was obtained in each study. All 
included studies adhered to the tenets of the Declaration 
of Helsinki and had respective local ethical committee 
approval. We obtained permission from the principal 
investigator of each study to use the data.

Definition of disease-related visual impairment
We defined any disease-related visual impairment as eyes 
from patients with major eye disease with best-corrected 
visual acuity or pinhole visual acuity of worse than 20/40 
(ie, logarithm of the Minimum Angle of Resolution 
[logMAR] measurement >0·30). In each study, ground 
truth for presence of disease-related visual impairment 
were ascertained by trained ophthalmologists in each 
study by assessing clinical records and retinal photos. 
Final adjudication was done by a senior consultant in 
each study. Mild disease-related visual impairment was 
defined as eyes from patients with eye disease with best-
corrected visual acuity or pinhole visual acuity 
between 20/40 and 20/60 (ie, logMAR 0·30–0·48). 
Moderate or worse disease-related visual impairment 
was defined as eyes from patients with eye disease with 
best-corrected visual acuity or pinhole visual acuity worse 
than 20/60 (ie, logMAR >0·48).

Models of algorithms
We used two different models of algorithms for 
predicting disease-related visual impairment and best-
corrected visual acuity (appendix p 11). For our primary 
outcome of the prediction of the presence of visual 
impairment (ie, a classification task), we used a 
classification-based model. For the secondary outcome of 
predicting best-corrected visual acuity level, we used a 
regression-based model.

Development of the deep learning algorithm
We used supervised deep learning methods for both the 
classification-based and regression-based models. The 
primary input to each of the deep learning models were 
the pre-processed macula-centred retinal photographs, 
and the relevant clinical labels (ie, visual impairment 
status). With these annotated data, we used a deep 
convolutional neural network, called the Residual Neural 
Network ResNet-50 architecture.35 We used a ResNet-50, 
which had been pretrained on the ImageNet dataset.36 
These convolutional neural networks then further ext
racted features from the retinal photographs. We further 
applied extreme gradient boosting techniques (a scalable 
tree boosting system)37 to do the classification tasks for 
prediction of disease-related visual impairment and reg
ression tasks for prediction of best-corrected visual 
acuity. The final output of the classification model was 
the probability of the presence of disease-related visual 
impairment in each dataset. The final output of the 
regression model was the algorithm-predicted best-
corrected visual acuity in each dataset. Further details of 

See Online for appendix
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model development including model pipeline, feature 
extraction, and pre-training are in the appendix 
(pp 24–27). 

Saliency maps
To understand which regions of the retinal photographs 
were most likely used by the neural network for pre
diction of visual impairment or normal vision (visual 
acuity ≥20/40 or ≤logMAR 0·30), we generated saliency 
maps using the GradCAM method.38 These saliency 
maps are presented as coloured heatmaps, with hotter 
colours (ie, reds and oranges) indicative of regions with 
increased contributions towards the predicted output 
and colder colours (eg, blue and green) might be 
indicative of relatively less contributions towards the 
predicted output. Further details of saliency map 
generation are in the appendix (p 27).

Statistical analysis
To assess the model’s performance for binary classi
fication of visual impairment (by eye), we used the 
measures of the area under the receiver operating 
characteristic curve (AUC), sensitivity, and specificity. 
We selected the classification threshold on the basis of 
the Youden’s index.39 We calculated the 95% CIs for 
these performance measures using 2000 bootstrap 
replicates. To assess the model’s performance for 
continuous predictions (ie, outputs from regression 

model), we used mean absolute error, mean difference, 
95% limits of agreement, and intraclass correlation. For 
the estimation of intraclass correlation values, we used 
a two-way mixed effect intraclass correlation model 
(with average fixed raters assumption). Intraclass 
correlation values between 0·81 and 1·00 indicate 
almost perfect agreement, values between 0·61 and 
0·80 indicate good agreement, and values between 0·41 
and 0·60 indicate moderate agreement. Values less 
than 0·40 indicate poor-to-fair agreement.40

In a post-hoc analysis, we investigated the total number 
of false positive and false negative eyes in the external 
test datasets and we analysed the common causes of false 
negatives and positives in the internal test dataset.

We also did post-hoc analyses on various classification 
tasks in the test datasets. First, we did a subgroup 
analysis by patient age, in which we assessed the 
performance of classification algorithm among eyes of 
individuals aged 60 years and older in both internal and 
external test datasets. Second, we did a sensitivity analysis 
at the individual level, in which individuals were defined 
as having visual impairment when either eye was visually 
impaired. This analysis was done in both internal and 
external test datasets. Third, we investigated the 
algorithm’s specific performances in detecting disease-
related visual impairment due to cataract, diabetic retino
pathy, and any maculopathy. These specific analyses were 
done only in the internal test dataset. 

Development 
dataset (SEED)

Internal test 
dataset (SEED)

External test datasets

BES CIEMS BMES CUHK-STDR OPS

Number of patients 7793 1954 3307 3435 1034 504 939

Number of eyes 15 175 3803 6239 6526 2002 971 1225

Age, years 58·8 (10·3) 58·6 (10·1) 64·2 (9·6) 48·2 (13·4) 76·6 (6·8) 61·2 (13·4) 61·6 (6·8)

Sex

Female 3950 (50·7%) 997 (51·0%) 1870 (56·5%) 1854 (54·0%) 597 (57·7%) 246 (48·8%) 616 (65·6%)

Male 3843 (49·3%) 957 (49·0%) 1437 (43·5%) 1581 (46·0%) 437 (42·3%) 258 (51·2%) 323 (34·4%)

Any disease-related 
visual impairment 
(by eye)

1351 (8·9%) 333 (8·8%) 384 (6·2%) 662 (10·1%) 170 (8·5%) 134 (13·8%) 147 (12·0%)

Mild disease-related 
visual impairment 
(by eye)

710 (4·7%) 186 (4·9%) 240 (3·9%) 149 (2·2%) 57 (2·9%) 74 (7·6%) 102 (8·3%)

Moderate disease-
related visual 
impairment (by eye)

641 (4·2%) 147 (3·9%) 144 (2·3%) 513 (7·9%) 113 (5·6%) 60 (6·2%) 45 (3·7%)

Best-corrected visual 
acuity, logMAR unit

0·10 (0·21) 0·10 (0·21) 0·07 (0·19) 0·11 (0·28) 0·11 (0·25) ·· ··

Pinhole visual acuity, 
logMAR unit

·· ·· ·· ·· ·· 0·17 (0·19) 0·21 (0·14)

Spherical equivalent, 
dioptre

–0·30 (2·23) –0·30 (2·33) –0·08 (1·75) –0·07 (1·57) –0·23 (2·08) ·· –0·08 (2·34)

Data are n, mean (SD), or n (%). For n (%), the denominator is number of patients or number of eyes (by eye), as applicable. BES=Beijing Eye study. BMES=Blue Mountains Eye 
Study. CIEMS=Central India Eye and Medical study. CUHK-STDR=Chinese University of Hong Kong’s Sight Threatening Diabetic Retinopathy study. logMAR= logarithm of the 
Minimum Angle of Resolution. OPS=Outram Polyclinic Study. SEED=Singapore Epidemiology of Eye Diseases. 

Table 1: Characteristics of the development and testing datasets



Articles

www.thelancet.com/digital-health   Vol 3   January 2021	 e33

In another post-hoc analysis, using the internal test 
dataset, we assessed the algorithm’s performance to 
differentiate between healthy eyes (control group) and 
eyes with disease with normal vision; and also between 
healthy eyes and eyes with disease with moderate or 
worse disease-related visual impairment.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. All authors had full access to all the data in the 
study and had final responsibility for the decision to 
submit for publication.

Results
We developed the deep-learning algorithm using retinal 
fundus images from a development dataset of 7793 study 
participants (15 175 eyes) from the SEED study. 
We validated the performance of the algorithm using 
retinal images from an internal test dataset of 1954 partici
pants (3803 eyes) from the SEED study, and five external 
test datasets including 3307 participants (6239 eyes) from 
the BES, 3435 participants (6526 eyes) from the CIEMS, 
1034 participants (2002 eyes) from the BMES, 
504 participants (971 eyes) from the CUHK-STDR, and 
939 participants (1225 eyes) from the OPS. The mean age 
of participants in the development dataset was 58·8 years 
(SD 10·3), in the internal test dataset was 58·6 years 
(10·1), and in the five external test datasets ranged from 
48·2 years (13·4) in the CIMES to 76·6 years (6·8) in the 
BMES (table 1). The ethnicity and race of participants 
varied by study, with participants in the SEED study and 
OPS, which were based in Asia, being Malays, Indian, 
and Chinese; participants in the BES and CUHK-STDR 
being Chinese; participants in the CIEMS being Indian; 
and participants in the BMES being White. Across all 
included datasets, the proportion of any disease-related 
visual impairment (by eye) ranged from 6·2% to 13·8%. 
Additional study participant demographics and 
characteristics are summarised in table 1.

We first examined the performance of the deep 
learning-based classification algorithm in detecting any 
and moderate or worse disease-related visual impair
ment. In the internal test dataset, the AUC for detection 
of any disease-related visual impairment was 94·2% 
(95% CI 93·0–95·3), with sensitivity of 90·7% 
(87·0–93·6) and specificity of 86·8% (85·6–87·9; 
table 2, figure 1). Across the three external test datasets 
from population-based studies that measured best-
corrected visual acuity, the AUC for detection of any 
disease-related visual impairment ranged between 
89·0% (95% CI 86·1–91·9; BMES) and 93·6% 
(92·4–94·8; BES). Sensitivity and specificity for 
detection for each of these three external datasets are 
shown in table 2. When applying the algorithm in the 
two external test datasets from clinical studies (CUHK-
STDR and OPS), which defined visual impairment on 

the basis of pinhole visual acuity measurement, the 
algorithm achieved AUCs of 86·6% (83·4–89·7; CUHK-
STDR) and 90·5% (88·2–92·8; OPS; table 2)

The AUC for detection of moderate or worse disease-
related visual impairment in the internal test dataset 
was 93·9% (95% CI 92·2–95·6), with sensitivity of 94·6% 
(89·6–97·6) and specificity of 81·3% (80·0–82·5; table 2, 
figure 1). When tested across the external test datasets, 
the algorithm showed the highest AUC in the BES 
dataset for detection of moderate or worse disease-
related visual impairment (93·5% [91·7–95·3]), followed 
by CIEMS (89·8% [88·2–91·4]), OPS (87·6% 
[82·4–92·9]), BMES (87·2% [83·5–91·0]), and CUHK-
STDR (85·9% [81·8–90·1]). When assessing mild 
disease-related visual impairment, the AUC in the 
internal test dataset was 92·7% (95% CI 90·9–94·6), with 
sensitivity of 87·6% (82·0–92·0) and specificity of 87·6% 
(86·5–88·7). Across the external test datasets, the AUCs 
ranged between 81·9% (77·2–86·6; CUHK-STDR) and 
92·5% (90·8–94·2; BES; appendix p 2).

At a specificity level of 80%, the sensitivity for detecting 
any disease-related visual impairment was 94·0% (95% CI 
90·9–96·3) in the internal test dataset, followed by 91·7% 
(88·4–94·2) in the BES, 88·8% (86·2–91·1) in the CIEMS, 
86·4% (79·8–91·5) in the OPS, 80·0% (73·2–85·7) in the 
BMES, and 72·8% (64·5–80·1) in the CUHK-STDR 
(table 3). For detection of moderate or worse (table 3) and 
mild (appendix p 3) disease-related visual impairment, the 
sensitivity levels (at 80% of specificity) were largely similar 
to those for any disease-related visual impairment albeit 
slightly lower across all test datasets.

Detection of any disease-related visual 
impairment*

Detection of moderate  or worse disease 
related visual impairment†

AUC Sensitivity Specificity AUC Sensitivity Specificity

Internal dataset

SEED‡ 94·2% 
(93·0–95·3)

90·7% 
(87·0–93·6)

86·8% 
(85·6–87·9)

93·9% 
(92·2–95·6)

94·6% 
(89·6–97·6)

81·3% 
(80·0–82·5)

External datasets

BES‡ 93·6% 
(92·4–94·8)

87·8% 
(84·1–90·9)

87·1% 
(86·2–88·0)

93·5% 
(91·7–95·3)

90·3% 
(84·2–94·6)

84·2% 
(83·2–85·1)

CIEMS‡ 92·8% 
(91·7–94·0)

82·3% 
(79·2–85·2)

90·6% 
(89·8–91·3)

89·8% 
(88·2–91·4)

76·4% 
(72·5–80·0)

89·1% 
(88·3–89·9)

BMES‡ 89·0% 
(86·1–91·9)

75·9% 
(68·7–82·1)

89·7% 
(88·2–91·0)

87·2% 
(83·5–91·0)

79·6% 
(71·0–86·6)

79·6% 
(77·7–81·4)

CUHK-STDR§ 86·6% 
(83·4–89·7)

87·5% 
(80·7–92·5)

70·0% 
(66·7–73·1)

85·9% 
(81·8–90·1)

84·7% 
(73·0–92·8)

74·4% 
(71·4–77·2)

OPS§ 90·5% 
(88·2–92·8)

82·3% 
(75·2–88·1)

85·6% 
(83·4–87·7)

87·6% 
(82·4–92·9)

75·6% 
(60·5–87·1)

85·8% 
(83·7–87·7)

Data in parentheses are 95% CIs. AUC= Area under receiver operating characteristic curve. BES=Beijing Eye study. 
BMES=Blue Mountains Eye Study. CIEMS=Central India Eye and Medical study. CUHK-STDR=Chinese University of 
Hong Kong’s Sight Threatening Diabetic Retinopathy study. logMAR=logarithm of the Minimum Angle of Resolution. 
OPS=Outram Polyclinic Study. SEED=Singapore Epidemiology of Eye Diseases. *Defined as best-corrected visual acuity 
>logMAR 0·30 (ie, <20/40). †Defined as best-corrected visual impairment >logMAR 0·48 (ie, <20/60). ‡Defined 
visual impairment on the basis of best-corrected visual acuity measured from subjective refraction. §Defined visual 
impairment based on visual acuity measured from pinhole measurement.

Table 2: Performance of the classification algorithm in detection of any and moderate or worse disease-
related visual impairment
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Next, we examined the agreement in best-corrected 
visual acuity measurements between algorithm-predicted 
values (ie, outputs from the regression model) and actual 
best-corrected visual acuity level (ie, measured by 
subjective refraction; appendix p 4). In the internal test 
dataset, the mean absolute error was 0·076 (in logMAR 

unit), which is almost equivalent to a 4-letter (0·02 logMAR 
unit represents one letter) difference on a logMAR visual 
acuity chart. The mean difference was 0·01, with 
95% limits of agreement of –0·221 to 0·240. The intraclass 
correlation coefficient value was 0·82 (95% CI 
0·80 to 0·83), indicating almost perfect agreement 
between the two measurements. Across the relevant 
external test datasets, the mean absolute error ranged 
between 0·097 (BES) and 0·150 (CIEMS), and the 
intraclass correlation ranged between 0·62 (0·58 to 0·65; 
BMES) and 0·72 (0·71 to 0·73; BES), indicating good 
agreement between two measurements across all relevant 
external test datasets.

We used saliency maps to provide insights into the 
regions in the fundus image that could have influenced 
the algorithm’s predictions. For prediction of non-
visually impaired eyes, the saliency map consistently 
denoted the foveal area as the region used by the 
algorithm (figure 2). Additionally, the saliency maps 
highlighted regions identified by the algorithm when 
predicting disease-related visual impairment (figure 3). 
The highlighted regions were congruent with patho
logical features typically present in diabetic retinopathy, 
cataract, age-related macular degeneration, and severe 
glaucoma (figure 3).

Among the 333 eyes with visual impairment due to 
major eye diseases in the internal dataset, the algorithm 
correctly identified 303 eyes (ie, sensitivity of 90·7% 
[95% CI 87·0–93·6]). However, there were 30 false 
negative cases (ie, falsely classified by the algorithm as 
non-visual impairment); of which, 25 eyes had mild 
visual impairment, and five had moderate or worse 
visual impairment. The most common eye conditions 
that had false negative classification were mild cataract 
(14 [47%] of 30 eyes), age-related macular degeneration 
(five [17%]), epiretinal membrane (three [10%]), early 
lamellar hole (three [10%]), and diabetic macular 
oedema (diabetic retinopathy; two [7%]; appendix 
pp 5, 12–14).

In the internal test dataset, the algorithm 
identified 459 false positive eyes. Among these eyes, 
most had some form of irregularity albeit mild or sparing 
the foveal region (appendix pp 6, 15–18). The most 
common characteristics were hazy fundus photo due to 
the presence of cataract (272 [59%] of 459 eyes); drusen or 
pigmentary changes of the retinal pigment epithelium 
(51 [11%]), diabetic retinopathy (45 [10%]), tessellated 
fundus or extensive peripapillary atrophy (38 [8%]), and 
epiretinal membrane (25 [5%]). Normal appearance 
fundus was observed in eight (2%) of 459 retinal 
photographs in the internal dataset (appendix p 18).

In a post-hoc subgroup analysis that further assessed 
the performance of classification algorithm in the eyes of 
individuals aged 60 years and older, the AUC for detection 
of any disease-related visual impairment was 88·9% 
(95% CI 86·9–90·9; sensitivity of 83·1% [78·3–87·2]; 
specificity 80·9% [78·6–83·0]) in the internal test dataset. 

Figure 1: Performance of the classification algorithm for detection of any (A) and moderate or worse 
(B) disease-related visual impairment
AUC=area under the receiver operating characteristic curve. BES=Beijing Eye study. BMES=Blue Mountains Eye Study. 
CIEMS=Central India Eye and Medical study. CUHK-STDR=Chinese University of Hong Kong’s Sight Threatening 
Diabetic Retinopathy study. OPS=Outram Polyclinic Study. SEED=Singapore Epidemiology of Eye Diseases.
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CUHK−STDR: AUC=86·6% (95% CI 83·4–89·7)
OPS: AUC=90·5% (95% CI 88·2–92·8)

SEED (Internal): AUC=93·9% (95% CI 92·2–95·6)
BES: AUC=93·5% (95% CI 91·7–95·3)
CIEMS: AUC=89·8% (95% CI 88·2–91·4)
BMES: AUC=87·2% (95% CI 83·5–91·0)
CUHK−STDR: AUC=85·9% (95% CI 81·8–90·1)
OPS: AUC=87·6% (95% CI 82·4–92·9)

Detection of any disease-related visual 
impairment*

Detection of moderate or worse disease 
related visual impairment†

At 70% 
specificity

At 80% 
specificity

At 90% 
specificity

At 70% 
specificity

At 80% 
specificity

At 90% 
specificity

Internal dataset

SEED‡ 96·7% 
(94·2–98·3)

94·0% 
(90·9–96·3)

83·8% 
(79·4–87·6)

98·0% 
(94·2–99·6)

94·6% 
(89·6–97·6)

82·3% 
(75·2–88·1)

External dataset

BES‡ 95·1% 
(92·4–97·0)

91·7% 
(88·4–94·2)

82·8% 
(78·7–86·5)

94·4% 
(89·3–97·6)

91·7% 
(85·9–95·6)

83·3% 
(76·2–89·0)

CIEMS‡ 92·6% 
(90·3–94·5)

88·8% 
(86·2–91·1)

82·5% 
(79·4–85·3)

88·9% 
(85·8–91·5)

83·0% 
(79·5–86·2)

74·9% 
(70·9–78·6)

BMES‡ 87·1% 
(81·1–91·7)

80·0% 
(73·2–85·7)

73·5% 
(66·2–80·0)

84·1% 
(76·0–90·3)

77·9% 
(69·1–85·1)

65·5% 
(56·0–74·2)

CUHK-STDR§ 86·8% 
(79·9–92·0)

72·8% 
(64·5–80·1)

60·3% 
(51·6–68·6)

86·4% 
(75·0–94·0)

67·8% 
(54·4–79·4)

50·8% 
(37·5–64·1)

OPS§ 92·5% 
(87·0–96·2)

86·4% 
(79·8–91·5)

69·4% 
(61·3–76·7)

86·7% 
(73·2–94·9)

77·8% 
(62·9–88·8)

68·9% 
(53·4–81·8)

BES=Beijing Eye study. BMES=Blue Mountains Eye Study. CIEMS=Central India Eye and Medical study. 
CUHK-STDR=Chinese University of Hong Kong’s Sight Threatening Diabetic Retinopathy study. logMAR=logarithm 
of the Minimum Angle of Resolution. OPS=Outram Polyclinic Study. SEED=Singapore Epidemiology of Eye Diseases. 
*Defined as best-corrected visual acuity >logMAR 0·30 (ie, <20/40). †Defined as best-corrected visual impairment 
>logMAR 0·48 (ie, <20/60). ‡Defined visual impairment on the basis of best-corrected visual acuity measured from 
subjective refraction. §Defined visual impairment on the basis of visual acuity measured from pinhole measurement.

Table 3: Sensitivity of the algorithm for the detection of any and moderate or worse disease-related 
visual impairment at different specificity levels



Articles

www.thelancet.com/digital-health   Vol 3   January 2021	 e35

Across all external test datasets, the AUC ranged from 
82·4% (78·2–86·6; CUHK-STDR) to 91·2% (89·6–92·8; 
BES; appendix p 7). When assessing the detection of 
moderate or worse disease-related visual impairment, 
the AUC in the internal test dataset was 88·3% (95% CI 
85·5–91·2; sensitivity 78·7% [70·6–85·5]; specificity 
83·2% [81·1–85·5]). Across the external datasets, the 
AUC ranged from 81·3% (75·7–86·8; CUHK-STDR) to 
90·3% (87·5–93·1; BES; appendix p 7).

In another post-hoc sensitivity analysis, we explored 
the algorithm’s performance at an individual level. For 
the detection of any disease-related visual impairment, 
the sensitivity was the highest in the CUHK-STDR 
dataset at 92·1% (95% CI 85·0–96·5), followed by 91·4% 
(87·3–94·5) in the internal test dataset, 89·1% 
(85·2–92·3) in the BES, 85·6% (82·1–88·7) in the 
CIEMS, 84·9% (77·5–90·7) in the OPS, and 76·9% 
(68·7–83·9) in the BMES (appendix p 8). For the 
detection of moderate or worse disease-related visual 
impairment, the sensitivity was generally higher than for 
detecting any disease-related visual impairment, ranging 
from 76·9% (95% CI 60·7–88·9; OPS) to 93·5% 
(87·6–97·2; internal test dataset; appendix p 8). We found 
a slight improvement in sensitivity compared with the 
main analysis, with sensitivity improved by 0·7% to 
4·6%, but specificity reduced by 1·2% to 8·7%.

We also further assessed the algorithm’s specific 
performances in detecting disease-related visual 
impairment due to cataract, diabetic retinopathy, and 
any maculopathy. Across these three subgroups of 
causes of visual impairment, the algorithm’s 
performance was generally similar, with AUCs ranging 
between 91·9% (95% CI 88·8–95·0; maculopathy) to 
96·7% (94·9–98·5; diabetic retinopathy) for any disease-
related visual impairment, and 91·1% (81·3–100; 
diabetic retinopathy) to 95·0% (92·6–97·4; cataract) for 
moderate or worse disease-related visual impairment 
(appendix p 9).

In another post-hoc subgroup and sensitivity analysis, 
the AUC for the algorithm’s performance in 
differentiating between healthy eyes and eyes with 
disease and normal vision was 68·2% (95% CI 
65·7–70·6); while differentiation between healthy eyes 
and eyes with disease and moderate or worse visual 
impairment, the AUC was 95·9% (94·4–97·4; data not 
shown)—ie, slightly higher than the AUC of 93·9% for 
moderate visual impairment in main analysis.

Discussion
We developed a novel, single-modality, deep learning 
algorithm to detect disease-related visual impairment 
using only retinal photographs. This proof-of-concept, 
function-focused model could be deployed as a simple, 
automated, and comprehensive tool to identify referable 
disease-related visual impairment in the community, 
allowing more timely and pinpointed referral of such 
cases to tertiary eye centres.

Given this new algorithm only requires a single 
macular-centred retinal photograph as input, without the 
need for a skilled expert to assess the photographs or 
multiple tests, it could potentially offer an efficient option 

Figure 2: Saliency maps denoting the foveal area as the region used by the deep learning algorithm for 
specification of non-visually impaired eyes
Images are from the SEED internal test dataset (Canon retinal camera). In these heatmaps, hotter areas (reds and 
oranges) are indicative of regions with increased contributions towards the predicted output, and colder regions 
(blues and greens) might be indicative of relatively less contributions. In these nine different images (from nine 
different eyes) the algorithm consistently picks up the foveal region across different eyes.

Figure 3: Saliency maps highlighting regions that the algorithm focuses on when predicting the disease-
related visual impairments of cataract (A), diabetic retinopathy (B), age-related macular degeneration (C), 
and glaucoma (D)
Images are from the SEED internal test dataset (Canon retinal camera). In these heatmaps, hotter areas (ie, reds 
and oranges) are indicative of regions with increased contributions towards the predicted output and colder 
regions (blues and greens) might be indicative of relatively less contribution. For each disease subgroup, each set 
of three images (from three different eyes) consistently shows the same region or feature is highlighted by the 
algorithm.
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for identifying referable cases when screening in the 
community. When deployed alongside visual acuity tests, 
this algorithm could be used to better support national 
screening programmes in the efficient identification of 
individuals who should be referred, while catering for 
large screening volumes in the community. A possible 
scenario could be that when an individual does not pass 
the preliminary visual acuity test, a subsequent retinal 
photograph could be taken and automatically assessed 
using the algorithm, and the algorithm’s output would 
indicate whether the individual needs further referral. 
This new algorithm would also be useful when applied in 
low-resource communities (ie, that do not have trained 
eye-care personnel) with a large number of individuals to 
screen, such as in rural areas or low-income and middle-
income countries. However, due to the increasing 
accessibility of retinal photography in primary care 
settings and community screening programmes for 
diabetic retinopathy in Singapore and Asia,1,2 during 
which ophthalmologists or optometrists are not readily 
onsite, this new algorithm might also be used as an add-
on in these existing settings with minimal additional cost 
because retinal photographs are already a routine proce
dure. In these situations, our deep learning algorithm 
could also help to expand the capability of current 
screening programmes for diabetic retinopathy by addi
tionally identifying disease-related visual impairment in 
the same setting. This implementation could be 
especially relevant for diabetes care settings because 
visual impairment due to age-related eye diseases are 
also more prevalent among people with diabetes.41–44 
Finally, this algorithm could potentially be used in 
optometry practices alongside subjective refraction as a 
complementary test. In situations in which a patient’s 
vision cannot be improved with use of spectacles, an 
automatic assessment using a retinal photograph can be 
done using this algorithm, which will help to further 
ascertain the need for referral to tertiary eye care centre.

Previous deep learning studies in ophthalmology 
mostly focused on developing algorithms for detection of 
specific (or narrow-spectrum) eye diseases, such as 
diabetic retinopathy, age-related macular degeneration, 
and glaucoma, on the basis of retinal photographs.41,45–49 
However, these previous studies did not take into account 
the visual function status (ie, whether substantial visual 
loss was present that further justifies referral decision). 
The application of algorithms such as those in these 
previous studies does not align well with the actual 
scenario and demand in the community, where the 
priority lies in identifying and referring individuals with 
eye diseases concomitant with substantial visual loss 
versus just detection of eye diseases. Furthermore, in the 
context of community screening and given that disease-
related visual impairment might be attributed to multiple 
eye diseases, an algorithm that can more broadly identify 
individuals with eye disease (of many types) with visual 
impairment who should be referred to tertiary eye care 

would be more useful than previous single purpose-
designed algorithms. Applying multiple algorithms for 
different eye diseases in a real-world community scenario 
would be less efficient and more cumbersome for 
deployment. Furthermore, the function-focused and so-
called blanket-style approach of this deep learning 
algorithm might make it less likely to miss eye diseases 
with visual impairment in community screening than 
current disease-specific algorithms. 

This study is unique because of the type of data we 
used for the development and testing of the algorithm. 
To design and develop a relevant tool to be deployed in 
community settings, the algorithm must learn from 
population-representative data that reflect the patterns of 
visual impairment in the general population. For this 
reason, we curated development data from the SEED 
study, which is a well established population-based study 
comprising people from the three main ethnic groups 
in Asia—Malays, Indian, and Chinese.26 Additionally, we 
did external validation tests of our algorithm using three 
other landmark population-based studies (BES, CIEMS, 
BMES), and two other clinical studies (CUHK-STDR, 
OPS). Via this external validation, we found that our 
algorithm was robust and we gained further insight into 
the generalisability of our algorithm. For instance, across 
the three external population-based datasets, the 
performance of the algorithm was highest in BES but 
slightly lower in BMES, which predominantly included 
White participants. The improved performance observed 
in the BES dataset might be explained by the fact that the 
same retinal camera type was used in BES as was used in 
the SEED. And the lower performance in the BMES 
dataset than in the other datasets might be because the 
eyes of White people have lighter retinal pigmentation 
(thus different fundus appearance) than do the eyes of 
Asian people.41 Furthermore, the performance of the 
algorithm on the two external clinical studies was lower 
than on the three external population-based studies. This 
reduced performance is probably due to the use of 
pinhole visual acuity to define visual impairment in the 
clinical studies. The pinhole visual acuity measurement 
is known to have worse repeatability and validity than 
best-corrected visual acuity measured from subjective 
refraction, which was the standard method used in the 
three external population-based studies.15,21 The overall 
findings from the external test datasets provided useful 
insights into the generalisability of the algorithm.

In a subgroup analysis that further assessed the 
performance of classification algorithm among eyes of 
individuals aged 60 years and older, we observed similar 
results as the original main analyses. This finding 
indicates that the algorithm would perform similarly well 
on this older age group that has increased risk for 
disease-related visual impairment. However, in another 
sensitivity analysis that explored the algorithm’s 
performance at an individual level (ie, an individual 
would be defined as having visual impairment when 
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either eye has visual impairment), we observed largely 
similar results as in the main analyses, with slight 
improvement in sensitivity by 0·7% to 4·6%, but with a 
slight reduction in specificity values. We also further 
assessed the algorithm’s specific performances in 
detecting disease-related visual impairment due to 
cataract, diabetic retinopathy, and any maculopathy. 
Across these three subgroups of causes of visual 
impairment, the algorithm’s performance was generally 
similar for any disease-related visual impairment, 
and for moderate or worse disease-related visual 
impairment. 

In the internal test dataset, there were also 2965 eyes 
without disease and with normal vision (best-corrected 
visual acuity ≥20/40) and 505 eyes with early stages of 
disease but with normal vision (best-corrected visual 
acuity <20/40). In our additional assessment of the 
algorithm’s performance using health eye controls, we 
found that the AUC for the differentiation between 
healthy eyes and eyes with disease with moderate or 
worse vision impairment was slightly higher than was 
observed for moderate or worse visual impairment in the 
main analysis. This observation was not unexpected, 
given that the algorithm was originally designed as a 
function-focused tool to detect eyes with disease with 
substantial visual loss impairment, and not to merely 
detect cases of early features of eye disease with normal 
vision.

To further explore the algorithm’s decision-making 
process, we presented saliency maps that highlighted 
regions in the retinal photographs that the algorithm 
focused on to make predictions of whether eyes had 
normal or impaired vision. For instance, among eyes with 
normal vision, the saliency maps consistently highlighted 
the foveal region as the area mainly used by the algorithm 
to make predictions for outputs denoting so-called normal 
eyes. This finding corresponds with the current knowledge 
that the fovea is the retinal area responsible for central 
vision and its integrity is highly correlated with best-
corrected visual acuity level.50 However, among eyes with 
disease-related visual impairment, the regions highlighted 
in the saliency maps are mostly congruent with 
pathological signs present in major age-related eye 
diseases, such as cataract, diabetic retinopathy, age-related 
macular degeneration, and glaucoma. Interestingly, in 
instances in which two different pathological features were 
present in the same eye (SEED internal dataset), the 
algorithm identified both features while assigning 
different contributory weights to both. For example, 
regions with epiretinal membrane and glaucomatous optic 
disc in the same eye were both highlighted in the saliency 
map (appendix p 19). On closer inspection, the optic disc 
region with features of advanced glaucomatous damage 
was in fact highlighted with greater intensity than the 
epiretinal membrane region, suggesting that the algo
rithm deciphered advanced glaucoma as the main contri
buting cause of visual impairment in this patient, as was 

indeed the case.51 A similar case was identified (SEED 
internal dataset), with concomitant presence of advanced 
glaucoma and drusen (appendix p 19). Overall, the saliency 
maps showed encouraging evidence that the algorithm 
might identify clinically relevant features associated with 
disease-related visual impairment. Building on these 
findings, another so-called layer of the deep learning 
algorithm could be built for further subclassification of the 
cause or causes of disease-related visual impairment 
should visual impairment be detected. Such a feature 
would further enhance the algorithm’s overall capability 
and would be even more clinically informative than the 
current algorithm. We plan to further explore this area in 
the next phase of this project.

Minimisation of false negative misclassifications is 
essential to avoid missing patients that should be referred 
to tertiary eye centres who typically warrant timely 
treatment. In this regard, we investigated the causes of 
false negative classifications in our internal test dataset. 
Among the false-negative misclassifications (n=30), most 
were cases of mild visual impairment (n=25), but the 
algorithm missed five eyes with moderate or worse visual 
impairment, which were attributed to age-related 
macular degeneration, cataract, early lamellar hole, 
diabetic macular oedema, and other reasons. Most of 
these missed cases of moderate or worse disease-related 
visual impairment had subtle features of disease that are 
also difficult for less experienced ophthalmologists and 
graders to identify on the basis of retinal photographs 
alone. Additional refinement and training of the 
algorithm involving more of these cases would probably 
help to further improve the algorithm’s performance. 
Nevertheless, the current observations indicate that the 
algorithm is less likely to miss more severe visual 
impairment cases.

Reduction of false positive results is also an important 
consideration in community screening programmes to 
avoid unnecessary referrals. However, notably, in our 
internal test dataset, among the false positive classifi
cations (n=459) identified by the algorithm, only 
eight (2%) were eyes with normal vision. Most eyes that 
gave false positive results actually presented with some 
features indicative of disease or irregularities on the 
retinal photographs even though they had relatively 
normal best-corrected visual acuity. These features 
included hazy fundus due to presence of cataract, drusen 
of the retinal pigment epithelium, which are early markers 
of age-related macular degeneration, signs of diabetic 
retinopathy, and epiretinal membrane. Additionally, 
patients with stable diabetic retinopathy who had scars 
from laser eye treatment were also identified as having 
any disease-related vision impairment by the algorithm 
(from the SEED internal dataset: ten of 45 eyes with 
diabetic retinopathy, areas with laser scars were 
highlighted by saliency maps; three examples are shown 
in the appendix [p 20]). On closer inspection of these 
cataract cases with slit lamp photographs, we observed 
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that most did not have media opacities affecting the visual 
axes (appendix p 21). Likewise, in eyes that gave false 
positive results with diabetic retinopathy and epiretinal 
membrane, the foveal region was largely spared (from 
SEED internal dataset; appendix pp 16–17). These 
observations collectively explain the relatively normal best-
corrected visual acuity in these cases, despite the presence 
of disease. Overall, most of these false positive cases 
would not be deemed entirely to be incorrect referrals, and 
would probably benefit from further clinical assessment 
by eye care professionals. However, we also identified 
some true misclassifications involving tessellated fundus 
(so-called thin-looking fundus) with normal best-corrected 
visual acuity, which was especially evident in tessellated 
fundus concomitant with extensive peripapillary atrophy 
(from SEED internal dataset; appendix p 16). Saliency 
maps also showed that the algorithm probably interpreted 
the peripapillary atrophy region as an irregular feature 
responsible for disease-related visual impairment 
(appendix p 22). This observation provides a useful 
indication that further data training involving cases of 
extensive peripapillary atrophy (but with normal best-
corrected visual acuity) is required to minimise the 
algorithm’s false positive rates. This is especially important 
for Asian patients, given that extensive peripapillary 
atrophy is more prevalent in the eyes of Asian people than 
those of other ethnicities and races.52,53

Our study had several limitations. First, our deep 
learning algorithm was trained using a single Asian study. 
Subsequently, slightly lower performance was noted in a 
dataset of eyes from White individuals (the BMES), 
indicating that further refinement of the algorithm is 
needed by including more diverse training datasets to 
further improve the generalisability of the algorithm. 
Second, notably, the ground truth of visual impairment 
was defined on the basis of best-corrected visual acuity 
measurements, which are highly dependent on 
participants’ response during measurement. Thus, 
misclassifications of eyes as a result of this subjective 
measurement error cannot be entirely ruled out. Third, in 
this proof-of-concept study, to determine the best 
performance of the algorithm, we used Youden’s index, 
which provides a threshold with balanced maximisation of 
sensitivity and specificity.54 However, for eventual real-
world deployment, other contextual factors should also be 
taken into account when determining the classification 
threshold. These considerations include, the deployment 
site (ie, whether in community or clinical settings), local 
regulation for health technology deployment (where a 
minimum level of specificity and sensitivity must be 
achieved before roll out is granted), and the deployment 
model (ie, whether as a replacement or complementary 
tool). Finally, potential selection bias cannot be entirely 
ruled out in our study because the examination setting, 
image types, and qualities assessed in this proof-of-concept 
study might differ from those in eventual deployment 
sites. Further testing of the algorithm in real-world 

community settings in future studies and further 
assessment of its feasibility, efficiency, and cost-
effectiveness (compared with existing models) is essential. 

In summary, we developed and tested a new single-
modality, retinal photograph-based deep learning algo
rithm for detection of disease-related visual impairment 
that warrants referral to tertiary eye care. This new tool 
could potentially help to improve the provision of more 
timely and accurate referral of patients with disease-
related visual impairment from community settings to 
tertiary eye hospitals.
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