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Abstract: There is currently no objective portable screening modality for narrow angles in the com-
munity. In this prospective, single-centre image validation study, we used machine learning on slit 
lamp images taken with a portable smartphone device (MIDAS) to predict the central anterior cham-
ber depth (ACD) of phakic patients with undilated pupils. Patients 60 years or older with no history 
of laser or intraocular surgery were recruited. Slit lamp images were taken with MIDAS, followed 
by anterior segment optical coherence tomography (ASOCT; Casia SS-1000, Tomey, Nagoya, Japan). 
After manual annotation of the anatomical landmarks of the slit lamp photos, machine learning was 
applied after image processing and feature extraction to predict the ACD. These values were then 
compared with those acquired from the ASOCT. Sixty-six eyes (right = 39, 59.1%) were included for 
analysis. The predicted ACD values formed a strong positive correlation with the measured ACD 
values from ASOCT (R2 = 0.91 for training data and R2 = 0.73 for test data). This study suggests the 
possibility of estimating central ACD using slit lamp images taken from portable devices. 
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1. Introduction 
Angle closure glaucoma is a cause of major visual impairment in Asia; 87% of pa-

tients with angle closure glaucoma globally are Asian [1]. The prevalence of patients with 
all occludable angles (including primary angle closure and primary angle closure glau-
coma) is estimated to be 6.3% in Singaporeans aged 40 years old and above [2], of whom 
79% may not have been diagnosed before [3]. Age and sex standardized incidence of acute 
angle closure glaucoma (AACG) was reported as being up to 15.5 cases/100,000 person-
years among Chinese Singaporeans [4,5]. In addition, only 25–35% of AACG in Asian 
people cause symptoms [3,6,7]. The direct cost of treatment for AACG in Singapore has 
been estimated to be between US$879.45 to US$2576.39 over five years [8]. 

The advent of anterior segment optical coherence tomography imaging (ASOCT) has 
made anterior chamber assessment both quantitative and objective. There has been a 
rapid development and maturation of OCT imaging technology over the past two dec-
ades, and it has seen a significant increase in clinical applications in anterior segment con-
ditions, from cornea to dry eyes to glaucoma assessment [9]. Common parameters used 
to describe the features of the anterior chamber angle include the angle opening distance 
(AOD), the anterior chamber area (ACA), and the trabecular-iris space area (TISA), with 
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AOD750 being the best performer in a community-based screening study [10]. However, 
ASOCT machines are expensive and bulky, and may only be available in specialist eye 
clinics. 

Artificial intelligence (AI) has seen tremendous breakthroughs in ophthalmic imag-
ing in recent years [11], especially with respect to fundal imaging for the diagnosis of di-
abetic retinopathy [12,13], age-related macular degeneration [14,15], and glaucoma [16]. 
Machine learning techniques have also been employed more recently to ASOCT to auto-
matically detect patients at risk of gonioscopic angle closure [17–19]. This provides the 
opportunity to automatically and conveniently screen patients at risk of angle closure dis-
ease in high-risk populations in lieu of the labour-intensive gonioscopy. However, there 
are limited options available for standardized angle screening using portable devices. In 
this study, we describe our exploration using machine learning to predict anterior cham-
ber depth (ACD) through slit lamp images taken with a portable smartphone slit lamp 
device (MIDAS; Figure 1). 

 
Figure 1. Sample of a MIDAS device in use. 

2. Materials and Methods 
2.1. Patient Recruitment and Image Capture 

Here, 70 eyes of 70 patients were recruited from June 2018 to February 2019. After 
excluding two eyes because of poor image quality and two because of inadequate ASOCT 
images, a total of 66 eyes (right = 39, 59.1%) were included. 

This was a prospective, single centre clinic-based, digital imaging validation study. 
Prospective patients in the outpatient eye clinic were identified by a research assistant 
prior to their visit, and were recruited after informed consent at the end of their consulta-
tion. The inclusion criteria of these patients were as follows: 
• Willing and able to participate in study 
• Be at least 60 years old (inclusive) 
• Had not had prior intraocular surgery or laser procedures to the eye 
• Be fit enough for keep eyes open for adequate image acquisition 
• Not have concurrent eye pathologies that may obscure photo-taking of the eye 
• Not have previous laser or surgical glaucoma interventions 

The research followed the tenets of the Declaration of Helsinki and was approved by 
the institutional domain specific review board (DSRB). Informed consent was obtained 
from all subjects after an explanation of the purpose and possible consequences of the 
study. 
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2.2. Image Capture Protocol 
After acquiring informed consent, patients were brought to another room for sequen-

tial image capture with the following set-up, as described below. 
• Set-up A: Smartphone (Samsung® Galaxy S7, Seoul, South Korea) with a MIDAS 

portable slit lamp mount prototype. 
• Set-up B: Corneal anterior segment non-invasive three-dimensional swept source im-

aging system (Tomey® SS-1000 CASIA ASOCT, Nagoya, Japan). 
Set-up A was performed in a dimmed room to simulate mesopic conditions similar, 

but not identical, to those used for van Herick grading [20]. The MIDAS device is a light-
weight portable slit lamp prototype that utilizes a smartphone camera to capture anterior 
segment images. It is a non-contact device that comprises a light-emitting diode (LED) 
module fitted behind an optical slit and achromatic condensing lenses to produce an inci-
dent light of 45°, with the beam measuring 1 mm wide by 15 mm tall. It contains a clamp 
that could be fitted to most regular sized smartphones and is powered by the 
smartphone’s battery (Figure 1). When assembled with a compatible smartphone, the set-
up provides 10× image magnification through a macro lens and focuses at a distance of 21 
mm. The MIDAS device is currently not commercially available. 

A standardized image capture protocol is performed using Set-up A, including im-
age capture in the same room under identical mesopic conditions. With the patient look-
ing forward, the device is advanced squarely towards the eye of interest, parallel to the 
frontal plane of patient’s eye. The incident light beam is then focused over the anterior iris 
surface in the mid-peripheral iris (Figure 2, left). Care is taken to ensure the light beam is 
not too central (where it would be interrupted by the pupil) or too peripheral (where it 
might be obscured by the peripheral arcus). Once focused, an anterior segment slit lamp 
image is captured using the smartphone camera app, and the resultant file is saved as a 
camera Raw image on the smartphone (Figure 2, left). Depending on patient cooperation, 
multiple images may be captured in approximately 1 mm steps from nasal to temporal, 
and the best image would be selected by the performing technician. For the purposes of 
this study, the corneal curvature was assumed to be prolate ellipsoid; no formal keratom-
etry or corneal topography was performed. 

Following image capture of the undilated eye(s), patients were moved to the adjacent 
room for ASOCT capture using Set-up B. If both eyes were eligible, non-mydriatic images 
were captured from both eyes, but only one eye was selected for analysis – by default, the 
eye with an image of a better quality was selected. Through this, two sets of images of the 
same eye were captured—anterior segment slit lamp images from set-up A (Figure 2, left) 
and ASOCT images from set-up B (Figure 2, right). 

 
Figure 2. A sample image obtained from the MIDAS instrument and its corresponding anterior 
segment optical coherence tomography image. 

Sixteen equally-spaced angle images (eight meridians) per eye were manually 
marked by a grader to identify the scleral spur for the automatic calculation of the relevant 
anterior chamber parameters [21]. Separately, de-identified ASOCT images from Set-up B 
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were annotated manually using CASIA software by a single grader. The relevant anterior 
chamber parameters were extracted from ASOCT and can be used as the reference for 
training and testing the machine learning model. These include, but are not limited to, the 
following: angle opening distance at 500 µm (AOD500), trabecular-iris space area at 500 
µm (TISA500), angle recess area (ARA), and central anterior chamber depth (ACD). 

2.3. Image Feature Extraction and Application of Machine Learning Techniques 
The Van Herick method is a technique to screen for angle closure based on the width 

of the corneal slit image and slit image on the iris generated by the slit lamp. Using the 
same principles behind the Van Herick method, the width between the corneal and iris 
slit in the slit lamp images obtained from the smartphone (Figure 2, left) can also be used 
to relate to the angle closure and ACD. These dimensions from the slit lamp image cap-
tured by the smartphone and the corresponding ACD obtained from the patient’s ASOCT 
image (Figure 2, right) were used to train the machine-learning model. 

The images captured on the smartphone camera were processed by independent op-
erators with no prior knowledge of patients’ medical condition. Adobe Illustrator (version 
CC 2019) was used to extract the dimensions related to ACD by measuring the distance, 
in pixels, between various landmarks of the image. The landmarks were kept consistent 
for all of the eye images and were annotated for future reference. 

The various dimensions extracted from the smartphone camera image and the corre-
sponding ACD values from the ASOCT images were then used to train a Random Forest 
Regression model to predict ACD. Random Forest [22] uses multiple decision trees gen-
erated using bootstrapping, where a randomly selected subset of data is used to train an 
individual decision tree. The outputs of the individual decision trees were then aggre-
gated to get the output of the model. 

The Random Forest model was trained using the entire sample set. However, the 
estimate of the error was evaluated using out-of-bag data. Out-of-bag data for a tree refers 
to data that were not used to generate that particular decision tree. The out-of-bag data 
for each tree was used as test data, and these predicted values were aggregated for every 
sample data point when it was an out-of-bag sample. 

For our Random Forest regression model, the number of trees used was 11, with a 
minimum leaf sample of 1. For each decision tree, the data were randomly split into 0.6 of 
the samples used as the training subset and 0.4 of the samples as out-of-bag data, which 
were then used to estimate the error. 

For regression, there are several loss functions that can be employed, such as mean 
square error, mean absolute error, and structural similarity index [23,24]. The loss func-
tion, or error criterion, used in training was mean absolute error (MAE), which is given 
by Equation (1), 𝑀𝐴𝐸 = ∑ |𝑦 − 𝑦 |𝑛   (1)

where n is the total number of samples, 𝑦  the observed data, and 𝑦  the predicted data. 
These hyperparameters and loss functions were chosen to minimize out-of-bag error 

scores (out-of-bag error score = 1–coefficient of determination) which reflects the model 
ability to generalize. The Random Forest model was implemented using Scikit-learn (ver 
0.23.2). 

3. Results 
Figure 3 shows the relationship between the Random Forest model predicted central 

ACD values and their corresponding ASOCT-measured central ACD. The values pre-
dicted by the training data inputs had a positive linear correlation with a coefficient of 
correlation R2 of 0.91 which gave the training error. The out-of-bag sample data R2 was 
0.73. Tuning the model hyperparameters to increase the training data R2 would result in 
higher out-of-bag data prediction errors due to overfitting. 
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Figure 3. Training data validation. Central anterior chamber depth (ACD) values predicted from 
the training data vs. actual ACD from ASOCT. 

The root mean square error (RMSE), given by Equation (2), is used to compare the 
training set and out-of-bag set. 

𝑅𝑀𝑆𝐸 =  ∑ 𝑦 − 𝑦𝑛  (2)

where n is the total number of samples, 𝑦  the observed data, and 𝑦  the predicted data. 
The RMSE of the training and out-of-bag data are given in Table 1. 

Table 1. Metrics of the training and out-of-bag data set. 

 Training Set Out-of-Bag Samples 
Coefficient of Correlation, R2 0.91 0.73 

Bias 542.85 955.18 
RMSE 122.33 200.03 

Figure 4 shows the Bland–Altman plot of the predicted ACD values from the training 
data and out-of-bag data, against ACD obtained from ASOCT. Most of the predicted val-
ues were within 200 µm of the actual ACD from ASOCT. The model tended to overesti-
mate the samples with smaller ACD, and underestimate the value of the samples of sam-
ples with larger ACDs. 
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Figure 4. Bland–Altman plot showing ASOCT-derived ACD and predicted values from the train-
ing inputs and the out-of-bag samples. 

The features importance, which is calculated based on Gini-impurity, are given in 
Table 2. The input features are derived from dimensions measured between various land-
marks of the eye image, which was captured on a smartphone with a portable slit lamp. 

Table 2. Features importance (normalized) calculated based on Gini-impurity. 

Dimensions Feature Importance  
(Normalized) 

A 0.15 
B 0.13 
C 0.18 
D 0.16 
E 0.16 
F 0.10 
G 0.11 

4. Discussion 
This pilot study demonstrated that using images captured from a portable slit lamp 

device, it was possible to use machine learning to predict the central ACD of our patients. 
To our knowledge, this is the first study of its kind using machine learning on a mobile 
slit lamp device. 

Angle closure glaucoma is a cause of major irreversible visual loss in Asia [1]. How-
ever, patients with this condition are typically asymptomatic, making the identification of 
this condition difficult in the community. The diagnosis of angle closure disease usually 
requires clinical examination with a slit lamp, with gonioscopy and additional anterior 
segment imaging including ASOCT. Subjective clinical assessment such as van Herick 
grading has only moderate repeatability in trained graders [25,26]. In addition, there is 
currently no objective screening modality in the community—healthcare practitioners 
could use a pen torch or handheld slit lamp, but these assessment methods are subjective 
and are also dependent on clinical experience. Machine learning has previously been ap-
plied to ASOCT to automatically measure anterior chamber features with variable success 
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[17–19]. However, ASOCT machines are bulky and expensive, making them unsuitable 
for deployment in a community-based setting. The van Herick method has been proposed 
as a simple triage test before gonioscopy [27], but it has been reported to have varying 
sensitivities and specificities, with the lowest being 53% [28] and 57% [6], respectively. In 
addition, the van Herick method is technically harder to perform in a mobile setting using 
a portable slit lamp. Screening with a pen torch would be expected to have even poorer 
sensitivities and specificities. 

Our novel portable slit lamp could be used with most smartphones of regular dimen-
sions, and with this pilot study, there is promise of an objective AI-driven diagnostic ca-
pability for angle screening, for the first time made for a portable device. Patients who are 
identified to be at risk of angle closure disease with this technology could then be referred 
to a tertiary eye centre for further evaluation of possible angle closure. Further studies 
would be required to refine the AI algorithm to predict other relevant anterior chamber 
parameters and to define thresholds for making recommendations for further formal an-
gle closure assessment. 

In this exploratory study, we were limited by the small sample size (n = 66). The out-
of-bag sample prediction R2 was 0.73 with a bias of 955.18, which may be due to the small 
sample size. Manual marking of image landmarks by human graders could also introduce 
inaccuracies. To improve the model, a larger sample size is needed, with a better-balanced 
distribution of central ACD values, and the Random Forest hyperparameters need to be 
tuned again. Other machine learning methods for regression, such as neural networks, 
can also be studied and evaluated with the aim of improving prediction outcomes. Auto-
matic feature extraction using image processing methods could be employed to reduce 
inter- and intra-operator errors in the manual extraction of features from images obtained 
by smartphones. 

The prediction is currently limited to central ACD, but the prediction of other ante-
rior chamber parameters (AOD500, TISA500, ACA, etc.) would be expected in subsequent 
studies of larger sample sizes. In addition, not all patients underwent gonioscopy for this 
study, as the clinicians attending to the patients were not directly involved in this study 
and thus there was no standardized comprehensive angle assessment. However, the aim 
of this study was to predict central ACD in all patients and, in this regard, the classification 
of narrow angles was of secondary importance. Lastly, this study was performed on a 
uniformly East Asian population (all patients were Chinese) aged 60 years and above, 
thus the results may not be extrapolated to other dissimilar populations. More studies 
would be required to refine the model and compare it with current clinical standards of 
community-based angle screening. 

5. Conclusions 
In conclusion, we have developed a new method of predicting central ACD using a 

portable smartphone slit lamp device aided by machine learning. 
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