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Age-related cataracts are the leading cause of disease-related 
visual impairment globally, accounting for 94 million adults 
aged ≥50 years who experienced low vision or blindness 

in 2020 (ref. 1). Although a cataract is easily treatable, a significant 
number of patients with a visually significant cataract (that is, a 
cataract with severe visual loss) remain undiagnosed in communi-
ties, especially in rural areas, due to the limited availability of, or 
accessibility to, cataract screening2,3. Based on a previous report in 
an Asian population, up to 68.8% of older adults with visually sig-
nificant cataracts were not aware of having the condition2. Hence, 
there is a critical need to facilitate access to cataract screening for 
earlier surgical intervention. This is also important given that cata-
ract surgery is a highly cost-effective intervention4,5.

The conventional approach for cataract diagnosis relies mainly 
on the assessment of the human crystalline lens using slit-lamp bio-
microscopy, operated by trained ophthalmologists. However, this 
conventional approach poses a major challenge in lower-income 
countries or rural communities where there are shortages of trained 
ophthalmologists6. In other high-income countries, although 
community eye-screening programs, such as a diabetic retinopa-
thy (DR)-screening program, are in place, they generally do not 
include slit-lamp-based examinations or have ophthalmologists on 
site to examine for cataracts. Hence, the traditional ophthalmolo-
gist-dependent model has limited reach and screening capacity, 

if applied to community screening. An automated, deep-learning 
algorithm that can detect visually significant cataracts based on reti-
nal photographs may help to address this issue. The development of 
such a system has remained relatively unexplored7.

Although some previous studies reported retinal photograph-
based, deep-learning algorithms for detecting cataracts, these 
algorithms had focused only on the presence of cataracts, with-
out considering the vision status8–12. Such algorithms would prob-
ably result in over-referrals of mild/nonvision-threatening cataract 
cases, who might not require surgery for many years. These earlier 
studies also did not demonstrate the algorithms’ performance in 
external validations. Moreover, these previous studies were flawed 
in their ground truth establishment, in which cataract grading was 
determined in a nonstandardized way, based solely on subjective 
judgment of ‘haziness level’ on a retinal photograph.

To address these gaps, using a total of 25,742 retinal photo-
graphs, we designed and tested a new retinal photograph-based, 
deep-learning algorithm for identification of visually significant 
cataracts. Such an algorithm would potentially serve as a more 
efficient cataract-screening tool in the community. Furthermore, 
given the increasing availability of retinal cameras and their 
increasing use in community eye-screening programs, this new 
algorithm could be potentially adopted and integrated into existing  
screening programs.
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Age-related cataracts are the leading cause of visual impairment among older adults. Many significant cases remain undi-
agnosed or neglected in communities, due to limited availability or accessibility to cataract screening. In the present study, 
we report the development and validation of a retinal photograph-based, deep-learning algorithm for automated detection 
of visually significant cataracts, using more than 25,000 images from population-based studies. In the internal test set, the 
area under the receiver operating characteristic curve (AUROC) was 96.6%. External testing performed across three studies 
showed AUROCs of 91.6–96.5%. In a separate test set of 186 eyes, we further compared the algorithm’s performance with 4 
ophthalmologists’ evaluations. The algorithm performed comparably, if not being slightly more superior (sensitivity of 93.3% 
versus 51.7–96.6% by ophthalmologists and specificity of 99.0% versus 90.7–97.9% by ophthalmologists). Our findings show 
the potential of a retinal photograph-based screening tool for visually significant cataracts among older adults, providing more 
appropriate referrals to tertiary eye centers.
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Results
We developed the deep-learning algorithm using retinal fundus 
images of 4,138 study participants (8,045 eyes) as a development set 
from the Singapore Malay Eye Study (SIMES) cohort study. We vali-
dated the performance of the algorithms using retinal images from 
900 individuals (1,692 eyes) as an internal test set from the SIMES 
cohort, and then tested this further using 3 external test sets includ-
ing 8,444 individuals (16,005 eyes) from the Singapore Chinese Eye 
Study (SCES), Singapore Indian Eye Study (SINDI) and Beijing  
Eye Study (BES). The mean (±s.d.) of age was 59.4 (±10.2) years in 
the internal test set of the SIMES cohort. Although the mean age of 
the participants in the external test sets ranged from 57.1 ± 9.1 years 
in SINDI to 63.9 ± 9.3 years in BES, across all the included datasets, 
the prevalence of visually significant cataracts (by eyes) ranged from 
1.04% to 6.05%. The demographics and characteristics of the study 
participants are summarized in Table 1.

We first examined the performance of the deep-learning-based, 
classification algorithm in detecting visually significant cataracts. 
In the internal test set, the algorithm’s AUROC for detecting visu-
ally significant cataracts was 96.6% (95% confidence interval (CI) 
95.5–97.7), with a sensitivity of 95.7% and a specificity of 89.0%. 
Across the three external tests, the AUROC for detection of visually 
significant cataracts was 91.6% in BES, 96.3% in SINDI and 96.5% 
in SCES. Furthermore, our algorithm had a sensitivity of 88.8% with 
a specificity of 81.1% in BES, a sensitivity of 94.2% with a specificity 
of 90.3% in SINDI and a sensitivity of 96.0% with a specificity of 
88.1% in SCES, for detection of visually significant cataracts (Table 2  
and Fig. 1). At a moderate specificity level of 80%, the sensitivity  
for detecting visually significant cataracts was 98.8% in the inter-
nal test set and ranged from 85.7% to 98.9% in the external test 
sets (Table 3). The confusion matrices for all test sets (internal and 
external) are shown in Supplementary Fig. 1.

In a post-hoc subgroup analysis that further assessed the perfor-
mance of the classification algorithm in the eyes of individuals aged 
≥60 years (Supplementary Table 1), the AUROC for detection of 
visually significant cataracts was 93.3% (95% CI 91.1–95.4, sensitivity 
90.5%, specificity 85.7%) in the internal test set. Across the external 
test sets, the AUROC ranged between 88.7% and 91.7%. In another 
post-hoc subgroup analysis by gender, similar performances to the 
results of the main analysis were observed (Supplementary Table 2).

Comparatively, when visually significant cataracts were defined 
based on a lower best-corrected visual acuity (BCVA) cut-off of 
<20/4013, we observed a similar, albeit slightly lower, performance 
of the algorithm. In the internal test set, the AUROC was 95.6% 
(95% CI 94.6–96.5), with a sensitivity of 91.5% and a specific-
ity of 87.6%. When tested across the three external test sets, the 
AUROC of the algorithm was the highest in SINDI (95.5%), fol-
lowed by SCES (95.2%) and BES (90.9%), (Supplementary Table 3  
and Supplementary Fig. 2). Similarly, at a moderate specificity 
level of 80%, the sensitivity of the algorithm in detecting visually  

significant cataracts was 95.6% in the internal test set and in the 
range 88.7–96.4% in the external test sets (Supplementary Table 4).

We further assessed the performance of the algorithm for the 
detection of severe visually significant cataracts. In the internal test 
set, the AUROC was 97.2% (95% CI 96.4–98.0) with a sensitivity 
of 96.8% (95% CI 92.9–100.0) and a specificity of 90.4% (95% CI 
83.6–91.7). Across the external test sets, the AUROC ranged from 
90.0% to 97.3% (Supplementary Table 5).

In further subgroup analyses, we evaluated the performance of 
the algorithm in detecting visually significant cataracts among eyes 
of individuals with diabetes but with no vision-threatening DR. 
The AUROC was 94.7% (95% CI 91.4–97.9) in the internal test set, 
with a sensitivity of 93.8% (95% CI 80.0–100) and a specificity of 
85.3% (95% CI 78.0–95.8). Across the external test sets, the AUROC 
ranged from 95.3% to 97.3% (Supplementary Table 6).

In another sensitivity analysis, we added back pseudopha-
kic eyes (originally excluded in the main analysis) to the test sets 
of SIMES, SCES and SINDI. In this additional evaluation, visu-
ally significant posterior capsular opacification (PCO) (defined as 
pseudophakic eyes with concurrent PCO and BCVA < 20/60) were 
categorized as ‘ground truth positive’. The AUROC was 96.5% (95%  
CI 95.1–98.0) in the internal test set, with a sensitivity of 95.9% (95% 
CI 88.4–99.1%) and a specificity of 87.1% (95% CI 85.5–88.6%). 
The AUROC was 96.4% in the SCES external test set and 94.5% in 
the SINDI external test sets (Supplementary Table 7).

In addition, we used saliency maps to provide insights into 
the regions in the fundus image that the algorithm most probably 

Table 1 | Characteristics of development and testing datasets

Characteristics Development set Internal test set External test sets

SIMES SIMES SCES SINDI BES

Number of patients 4,138 900 3,011 2,945 2,488
Number of eyes 8,045 1,692 5,747 5,626 4,632
Age, years (s.d.) 60.8 (11.0) 59.41 (10.21) 58.43 (9.22) 57.13 (9.07) 63.87 (9.30)
Male gender, no. (%) 1,951 (47.2) 430 (47.78) 1,638 (49.82) 1,498 (50.87) 1,060 (42.60)

Visually significant cataracta (by 
eye), no. (%)

487 (6.1) 72 (4.26) 141 (2.45) 138 (2.45) 48 (1.04)

Data presented as mean (s.d.) or no. (percentage), where appropriate. aCataract with BCVA!<!20/60.

Table 2 | Performance of classification algorithm in detection of 
visually significant cataracts

Detection of visually significant cataractsa

Testing sets AUROC (%) 
(95% CI)

Sensitivity (%) 
(95% CI)

Specificity (%) 
(95% CI)

Internal:
  SIMES (n!=!72; 

N!=!1,692)
96.6 
(95.5–97.7)

95.7 
(90.5–100.0)

89.0  
(84.7–93.5)

External:
  SCES (n!=!141; 

N!=!5,747)
96.5  
(96.0–97.0)

96.0  
(93.1–98.9)

88.1  
(86.5–89.6)

  SINDI (n!=!138; 
N!=!5,626)

96.3  
(95.6–96.9)

94.2  
(91.1–97.6)

90.3  
(89.7–91.0)

  BES (n!=!48; 
N!=!4,632)

91.6  
(90.2–93.1)

88.8  
(79.5–97.7)

81.1  
(70.5–88.2)

aCataract with BCVA!<!20/60. n, number of eyes with visually significant cataracts with BCVA  
cut-off of <20/60; N, total number of eyes.
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focused on when predicting the presence of visually significant 
cataracts. Based on the selective saliency maps shown in Fig. 2, 
we demonstrated that the regions probably used by the algorithm 
were congruent with haziness features on retinal images, typically  
associated with cataracts (as further confirmed by an ophthalmolo-
gist, T.H.R.).

We further investigated the causes of misclassifications com-
mitted by the algorithm in detecting visually significant cataracts. 
Among the 72 eyes with visually significant cataracts in the internal 
test dataset, the algorithm accurately identified 69 eyes (sensitivity of 
95.7%). Nevertheless, the algorithm had missed three eyes and these 
false-negative classifications were associated with the early stages of a 
posterior subcapsular cataract (PSC; Supplementary Fig. 3).

On the other hand, in the internal test set, there was a total of 
178 false-positive cases, of which 10 cases (5.6%) had BCVA > 20/60 
and a relatively clear view of the fundus (Supplementary Fig. 4a), 
whereas the remaining 168 cases (94.4%) had moderate or sig-
nificant ‘haziness’ on the retinal photo that was attributed to the 
presence of a cataract (Supplementary Fig. 4b). Saliency maps 
of false-positive examples from the internal test set are shown in 
Supplementary Fig. 5.

To further evaluate our model performance, we tested our algo-
rithm against two professional graders and four ophthalmologists 
in a subtest set of 186 randomly selected eyes. To illustrate our find-
ings, Fig. 3 shows the performance of our algorithm versus profes-
sional ophthalmic graders and four ophthalmologists in a receiver 
operating characteristic (ROC) plot. In the first-round evaluation, 
in which only retinal images were used, the artificial intelligence 
algorithm achieved a sensitivity of 93.3% (95% CI 85.9–97.5%) and 
a specificity of 99.0% (95% CI 94.4–99.9%), outperforming most of 
the human experts (indicated as filled markers in Fig. 3). The two 
professional graders had sensitivity levels of 27.0% and 24.7%, and 
both had a specificity level of 100%. The four ophthalmologists had 
sensitivity levels ranging from 29.2% to 93.3% and specificity levels 
ranging from 92.8% to 99.0%. In the second-round evaluation, all 
four ophthalmologists re-evaluated the same set of retinal images 
but were further supplied with the corresponding slit-lamp photo-
graphs. Their performance improved (indicated as empty markers 
in Fig. 3), but most were still poorer than the algorithm. The sensi-
tivity levels among the ophthalmologists’ second-round evaluation 
ranged from 51.7% to 96.6%, whereas the specificity levels ranged 

from 90.7% to 97.9%. A summary of the performance of the algo-
rithm and human experts for the evaluations is shown in Table 4. 
Supplementary Fig. 6 further compares the number of inaccurate 
predictions (that is, error rate) between the algorithm and the human 
experts. In the first-round evaluation, the algorithm achieved an 
error rate of 3.8% (95% CI 1.5–7.6), significantly lower compared 
with the human experts (all comparisons P < 0.001, except for clini-
cian 1 (P = 0.25)). The two professional graders had error rates of 
34.9% (95% CI 28.1–42.3) and 36% (95% CI 29.1–43.4) respectively, 
whereas the four clinicians had error rates ranging from 7.0% (95% 
CI 3.8–11.7) to 34.4% (95% CI 27.6–41.7). In the second-round 
evaluation, the ophthalmologists’ error rates improved (ranging 
from 6.5% to 24.7%), but were still higher than the algorithm’s (all 
comparisons P ≤ 0.003, except for clinician 1 (P = 0.346)).

Discussion
We developed and tested a deep-learning-based algorithm for the 
detection of visually significant, age-related cataracts, based on 
retinal photographs alone. When further compared with ophthal-
mologists’ evaluations, we demonstrated that the algorithm had a 
comparable, if not more superior, performance. Our findings indi-
cate that this retinal photograph-based algorithm may be used as a 
simple, automated and potentially low-cost alternative for screen-
ing of visually significant cataracts among older adults. Against the 
backdrop of the growing number of cataracts globally due to aging 
populations, and a corresponding shortage of ophthalmologists14, 
this algorithm may help to improve the screening, identification 
and referral of appropriate patients for cataract surgery, especially 
in low-resourced communities.

The uniqueness of this work lies with the use of a single imaging 
modality (that is, only a macula-centered retinal photograph) for 
the detection of visually significant cataracts, unlike the ‘traditional’ 
method which requires both slit-lamp and retroillumination pho-
tographs alongside BCVA measurement. In the present study, we 
used large training and testing datasets consisting of 25,742 retinal 
photographs in total, curated from well-established, population-
based studies (SIMES, SCES, SINDI and BES). Furthermore, we 
conducted external testing across three datasets (SCES, SINDI and 
BES), with the algorithm achieving an AUROC of >90% across all 
external datasets, demonstrating optimal generalizability of the 
algorithm. Across the external sets, the BES had a slightly lower area 
under the curve. This might be in part due to the different cata-
ract grading system (Age-Related Eye Disease Study (AREDS)) and 
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Fig. 1 | ROC curve showing performance of the classification algorithm for 
the detection of visually significant cataracts (defined as BCVA!<!20/60).

Table 3 | Sensitivity of classification algorithm in detection of 
visually significant cataractsa at different specificity levels

Testing sets Sensitivity (%) (95% CI)

At 70% 
specificity

At 80% 
specificity

At 90% 
specificity

Internal
  SIMES (n!=!72; 

N!=!1,692)
98.8  
(97.6, 100.0)

98.8  
(97.6, 100.0)

92.7  
(87.2, 97.8)

External
  SCES (n!=!141; 

N!=!5,747)
100.0  
(100.0,100.0)

98.9  
(97.7, 100.0)

91.0  
(87.2, 94.7)

  SINDI (n!=!138; 
N!=!5,626)

97.7  
(96.4, 98.9)

97.0  
(95.2,98.9)

94.0  
(90.8, 96.7)

  BES (n!=!48; 
N!=!4,632)

95.3  
(91.8, 97.9)

85.7  
(80.4, 90.9)

71.5  
(65.1, 77.8)

aCataract with BCVA!<!20/60. n, number of eyes with visually significant cataracts with BCVA  
cut-off <20/60; N, total number of eyes
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grader (J.B.J.) deployed in BES, compared with SCES and SINDI, 
which were both based on the Wisconsin grading system. In addi-
tion, BES had a smaller sample size and fewer visually significant 
cataract cases (n = 48).

In the subgroup analysis that assessed the performance of the 
algorithm among eyes of individuals aged ≥60 years, we observed 
largely similar performances across the internal and external test 
sets (Supplementary Table 2). This finding indicates that the algo-
rithm would perform relatively well on older age groups with 
increased risk of cataracts15. In addition, among 49 cases of con-
current visually significant cataracts and retinal diseases (curated 
from the SIMES, SINDI and SCES test sets), our algorithm was 
able to correctly identify 46 of them (93.9%, results not shown in 
tables), indicating that the algorithm could potentially perform well  
even in the concurrent presence of other retinal pathologies. We 
also performed another sensitivity analysis with pseudophakic eyes 
(originally excluded in the main analysis) added back into the test 
sets of SIMES, SCES and SINDI. In this additional evaluation, visu-
ally significant PCO (defined as pseudophakic eyes with concurrent 

PCO and BCVA < 20/60) were categorized as ground truth positive 
as well. Overall, we observed that the algorithm’s performance in 
this evaluation was still largely similar to the results of the main 
analysis (Supplementary Table 7). However, it should be noted that 
only small numbers of visually significant PCO (12 in total) were 
available in the current test sets. Hence, the algorithm’s performance 
in the presence of pseudophakic and PCO eyes still requires future 
evaluation with larger samples of visually significant PCO.

As an extension of our primary evaluation, we further compared 
our algorithm’s performance with experts (professional ophthalmic 
graders and ophthalmologists). Based on retinal photographs alone, 
the algorithm achieved better performance (sensitivity of 93.3% and 
specificity of 99.0%) than all the experts. In a further evaluation in 
which the ophthalmologists were additionally provided with stan-
dard slit-lamp photographs to assess the human crystalline lens, the 
algorithm (with retinal photograph input alone) still outperformed 
most of the ophthalmologists, further highlighting the potential of 
the algorithm as a simple and automated detection tool for identify-
ing visually significant cataract cases that probably warrant refer-
rals for cataract surgery. Based on the algorithm’s sensitivity level of 
93.3% in this test set of 186 eyes (89 positive cases), and the smallest 
difference of 3.3% between algorithm and human expert (clinician 
1’s second-round performance), this sample of 186 eyes was suf-
ficiently powered to confirm noninferiority (defined based on a 5% 
noninferiority margin) between algorithm and human expert, with 
a power of 95% at the 5% significance level.

Previous studies involving retinal images for cataract detec-
tion included relatively smaller datasets for the development 
of their algorithms, and most were not externally validated8–12. 
Importantly, the gold standard in these previous studies was based 
solely on a highly subjective method of classifying the retinal pho-
tographs’ haziness level (which could also be due to cornea opacity). 
Conversely, in our study, we used standardized and well-established 
cataract-grading protocols (the Wisconsin and AREDS grading sys-
tems)16,17. Furthermore, previous studies focused only on detecting 
the presence of cataracts, but without taking into account the visual 
function status (that is, whether there was substantial visual loss 
that further justified referral decision), which might inadvertently 
identify mild/nonvision-threatening cataract cases that typically do 
not require surgery in the short term, thus resulting in unneces-
sary/nonurgent referrals. In contrast, our developed algorithm was 
designed to identify visually significant cataract cases that would 
benefit more directly from cataract surgery.

Given that slit-lamp-based examinations and anterior seg-
ment photography (that is, of the exterior eye) are not commonly  

Cataract eyes with localized haze presented on retinal photos

Cataract eyes with generalized haze presented on retinal photos

a

b

Fig. 2 | Saliency maps highlighting regions that the algorithm focuses on when predicting visually significant cataracts. The highlighted regions in retinal 
photographs are congruent with the pathological features that typically present in eyes with significant cataracts. Cataract eyes with localized haze (a) 
and generalized haze (b) presented on retinal photos.
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performed in community vision screening, and traditional measure-
ment methods of BCVA (through subjective refraction or pinhole) 
require significant time, the conventional processes of determining 
visually significant cataracts in community screening involve multi-
ple tests and skilled manpower. Moreover, conventional assessments 
based on anterior segment photographs, even when coupled with 
self-reported symptoms, would probably be insufficient for identi-
fying the presence of visually significant cataracts. This is because 
cataracts are typically noticeable only from anterior evaluation 
when it is prominently dense or severe, and self-reported symptoms 
(such as glare or blur vision) are less accurate and may not neces-
sarily be attributed to cataracts. Although some current screening 
programs screen and refer based on a best-corrected vision thresh-
old only, it should be cautioned that this approach would not be 
able to definitively confirm the presence of cataracts, thus result-
ing in unnecessary false-positive referrals18–20. Importantly, such an 
approach would, at best, identify broad types of visual impairment 
cases that may not be cataract related, and thus would not fulfill the 
original purpose to specifically detect visually significant cataracts. 
Taken together, our proposed single-modality, retinal photograph-
based algorithm could potentially offer a more efficient option for 
identifying visually significant cataract cases in the general popu-
lation. Given the increasing accessibility of retinal photography 
and as it is already a routine procedure in most existing screening 
programs (for example, current DR-screening programs), the algo-
rithm might be used as an add-on test with minimal additional cost. 
Compared with deployment among older adults, deployment in 
existing screening programs that are already equipped with a retinal 
camera might be more readily implementable in this context. In the 
same vein, in the additional subgroup analysis among people with 
diabetes but with no vision-threatening DR, we also observed simi-
lar algorithm performance to the main analysis (Supplementary 
Table 6), further supporting the notion of deploying the algorithm 
in existing DR-screening programs.

A secondary potential application would be on DR-screening 
programs in which cataracts are a common cause of ungrad-
able retinal photographs21–24. An evaluation from the Thailand 
DR-screening program reported that ungradable retinal pho-
tographs affect DR-screening workflow, and participants with 
ungradable photos were instead referred directly to a second-
ary or tertiary eye hospital (Supplementary Fig. 7a, part i) which 

might inadvertently result in over-referrals23. In addition, based on 
the Singapore integrated DR-screening program’s (SIDRP’s) 2019 
record, among 2,543 ungradable retinal photographs, 1,132 (44.5%) 
were due to media opacity, further highlighting the potential mag-
nitude of cataract cases in DR-screening programs. In the SIDRP’s 
current workflow, in the event of an ungradable photograph, human 
grading would be deployed to further determine whether the non-
gradability is probably due to an artifact or significant cataract 
(Supplementary Fig. 7a, part ii). In this regard, our algorithm could 
possibly be deployed to ‘sieve out’ ungradable retinal photographs 
due to significant cataracts, thus making the current workflow less 
manpower intensive (as conceptually illustrated in Supplementary 
Fig. 7b). To demonstrate this potential utility, we randomly selected 
305 cataract-suspected ungradable photographs from the SIDRP 
(where graders indicated cataract as the reason for referral, but in 
the absence of slit-lamp examination or photographs), and further 
tested our algorithm on this separate set. Of the 305, our algorithm 
identified 301 as being visually significant cataracts (98.7%, results 
not shown in tables), indicating that the algorithm may poten-
tially improve current DR-screening program’s personnel-staffed 
workflow in identifying significant cataract cases among ungrad-
able photos. Nevertheless, it should be noted that definite cataract 
diagnosis (that is, the required ground truth in this context) among 
these SIDRP patients could eventually be ascertained only by fol-
lowing through their referral path to the tertiary center. Such data 
are currently not available and require further data linkage with a 
tertiary hospital. These ground truth data would be important in 
serving as a gold-standard reference to compare the performance 
between the algorithm and the SIDRP’s human grader in the next 
real-world evaluation work.

Minimization of false-negative misclassifications is essential to 
avoid missing significant cataract cases that would benefit from 
cataract surgery. In this regard, we further evaluated the reasons 
for false-negative classifications in the internal test set (n = 3). The 
three false-negative cases had an early PSC, located centrally on the 
visual axis, thus affecting the vision significantly despite its small 
size (Supplementary Fig. 3). There were minimal haziness features 
on the retinal photograph, which might have led to the algorithm 
‘missing’ such cases. When evaluating the false-negative cases in 
external test sets, similar observations were found (examples not 
shown in figures). Altogether, further refinement and training of 

Table 4 | Performance of AI and experts for the identification of visually significant cataract cases in a test set of 186 eyes

Sensitivity (%) 
(95% CI)

Specificity (%)  
(95% CI)

TP (no.) TN (no.) FP (no.) FN (no.) Accuracy (%) 
(95% CI)

Error rate (%) 
(95% CI)

Round 1 (using retinal photographs only)
 Our algorithm 93.3 (85.9–97.5) 99.0 (94.4–99.9) 83 96 1 6 96.2 (92.4–98.5) 3.8 (1.5–7.6)
 Grader 1 27.0 (18.1–37.4) 100.0 (96.3–100.0) 24 97 0 65 65.1 (57.7–71.9) 34.9 (28.1–42.3)
 Grader 2 24.7 (16.2–35.0) 100.0 (96.3–100.0) 22 97 0 67 64.0 (56.6–70.9) 36.0 (29.1–43.4)
 Clinician 1 93.3 (85.9–97.5) 92.8 (85.7–97.0) 83 90 7 6 93.0 (88.3–96.2) 7.0 (3.8–11.7)
 Clinician 2 53.9 (43.0–64.6) 97.9 (92.7–99.7) 48 95 2 41 76.9 (70.2–82.7) 23.1 (17.3–29.8)
 Clinician 3 60.7 (49.7–70.9) 96.9 (91.2–99.4) 54 94 3 35 79.6 (73.1–85.1) 20.4 (14.9–26.9)
 Clinician 4 29.2 (20.1–39.8) 99.0 (94.4–100.0) 26 96 1 63 65.6 (58.3–72.4) 34.4 (27.6–41.7)
Round 2 (using both retinal and slit-lamp photographs)
 Clinician 1 96.6 (90.5–99.3) 90.7 (83.1–95.7) 86 88 9 3 93.5 (89.0–96.6) 6.5 (3.4–11.0)
 Clinician 2 59.6 (48.6–69.8) 97.9 (92.7–99.7) 53 95 2 36 79.6 (73.1–85.1) 20.4 (14.9–26.9)
 Clinician 3 79.8 (69.9–87.6) 93.8 (87.0–97.7) 71 91 6 18 87.1 (81.4–91.6) 12.9 (8.4–18.6)

 Clinician 4 51.7 (40.8–62.4) 96.9 (91.2–99.4) 46 94 3 43 75.3 (68.4–81.3) 24.7 (18.7–31.6)

186 eyes randomly extracted from SCES and SINDI test sets, with visually significant cataracts defined as cataracts with BVCA!<!20/60. Cataracts were graded based on the Wisconsin cataract grading 
system by A.G.T. independently, to form the gold standard for this evaluation. TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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the algorithm with the addition of these early, ‘on-axis’ PSC cases 
would possibly improve the algorithm’s performance further.

On the one hand, reduction of false-positive results is also 
important to avoid unnecessary referrals. In the internal test set, of 
the 178 false-positive eyes, 10 (5.6%) had a relatively clear fundus 
view with BCVA > 20/60, and were indeed falsely classified by our 
algorithm. On the other hand, 168 false-positive cases (94.4%) had 
a BCVA > 20/60 but actually presented with either a moderately or 
significantly hazy fundus (Supplementary Fig. 4). When evaluating 
false-positive cases in external test sets (based on 10% randomly 
selected from all false-positive cases in each external test set), similar 
observations were found (examples not shown in figures). Saliency 
maps among the false-positive cases consistently illustrated that the 
algorithm probably interpreted the haziness appearances on retinal 
photographs as the ‘features’ responsible for the ‘positive output’ 
prediction (Supplementary Fig. 5), indicating that these false-pos-
itive cases were not entirely random errors made by the algorithm. 
It should also be noted that, in some instances of dense cataract 
eyes, despite having relatively less affected BCVA, dense cortical 
or nuclear cataracts may still affect contrast sensitivity, resulting 
in compromised visual function or night vision25,26. Therefore, the 
above-mentioned false-positive cases of hazy-looking fundus, but 
without severely poor BCVA visual loss, would probably still benefit 
from referrals to tertiary centers, and may not be deemed entirely to 
be incorrect referrals. Nevertheless, this aspect still requires future 
testing and evaluations for further ascertainment.

Our study has several limitations. First, it should be noted that 
part of the ground truth definition of a visually significant cata-
ract relied on BCVA measurement, which was dependent on the 
subject’s response during measurement, so measurement error in 
ground truth cannot be completely ruled out. Second, the slightly 
lower algorithm performance observed in the BES also highlighted 
the need to include more studies that utilized other cataract-grad-
ing protocols for future algorithm refinement. Last, despite the 
promising proof-of-concept demonstration, potential selection 
bias cannot be entirely ruled out because the examination setting, 
image types and qualities used in the present study may differ 
from the ones in the eventual deployment site. For future evalu-
ation, it is important to further test the algorithm in a real-world  
community setting.

In conclusion, we developed and tested a retinal photograph-
based, deep-learning algorithm for detection of visually significant 
age-related cataracts that allows automated and efficient referral to 
ophthalmologists for possible cataract surgery. This algorithm may 
potentially help to improve detection of visually significant cataracts 
in communities that lack trained eye-care personnel and resources.

Methods
Participants’ written informed consent was obtained and the participants received 
reimbursement for their time in each study. All included studies adhered to the 
tenets of the Declaration of Helsinki and had respective local ethical committee 
approval. We obtained permission from the principal investigator of each study to 
use the data. This study followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) reporting guideline27.

Study population. We developed and tested a deep-learning algorithm, using 
internal and external testing datasets comprising a total of 25,742 retinal 
photographs from 13,482 individuals across 4 studies. First, we utilized clinical 
data and retinal photographs of participants from the SIMES cohort as training 
sets28–30. The SIMES cohort dataset (n = 5,038; 9,737 eyes) was randomly distributed 
into a development set (n = 4,138) and an independent internal test set (n = 900; 
1,692 eyes) based on an 8:2 ratio at the individual level (that is, by person). This 
was to ensure that there was no overlap of data from the same individual across the 
development and internal test sets, to prevent model overfitting. The internal test 
set was not accessed during model development.

We further used the following three datasets for external testing: the SINDI31, 
the SCES31 and the BES32. Among the included studies, the SIMES cohort, SINDI 
and SCES performed cataract grading from slit-lamp and retroillumination 
photographs based on the Wisconsin cataract grading system16, whereas the 
photographic cataract grading in the BES was based on the AREDS system17. 

Further details on these two cataract-grading protocols are described in 
Supplementary Fig. 8.

Inclusion and exclusion criteria. Across the development and test sets, study 
participants with incomplete or missing cataract grading or BCVA data, or 
pseudophakic or aphakic eyes, were excluded. Study eyes with visual impairment 
caused by other pathologies such as DR, age-related macular degeneration and 
other maculopathy were also excluded. In the present study, only macula-centered 
retinal photographs were used. When multiple photographs were available for 
the same eye, only one photograph with the best quality was selected. Retinal 
photographs with severe motion or blinking artifacts and insufficient illumination 
were deemed to be poor quality due to artifact and were also excluded from the 
present study. Nevertheless, in photographs in which retinopathy cannot be graded 
due to media opacity (that is, ungradable photographs due to cataracts), they 
were still included for algorithm training. Further details on image exclusion are 
provided in Supplementary Table 8.

Definition of visually significant cataracts. For the present study, eyes with 
cataracts were defined as eyes with any of the following: nuclear cataract at grade 
≥4 according to the Wisconsin cataract grading system or grade ≥5 according 
to the AREDS system. Cortical cataracts were defined as ≥5% of total lens area 
involved with cortical opacity and PSC as any such opacity present (that is, >1%), 
in both grading systems. In SIMES, SCES and SINDI, the cataract was graded based 
on the Wisconsin grading system by a single grader with >15 years’ experience in 
performing Wisconsin cataract grading (A.G.T.). In the event of ambiguous cases, 
further adjudications were performed by a senior ophthalmologist (P.M.) and 
senior researcher (J.J.W.). In the BES, cataracts were graded based on the AREDS 
system and performed by a senior ophthalmologist (J.B.J.).

Visually significant cataracts were then defined as cataract eyes with 
BCVA < 20/60 (the World Health Organization’s definition for low vision)13. 
Eyes with severe visually significant cataracts were defined as late-stage cataracts 
(cortical cataract ≥25% or PSC > 5% or nuclear cataract ≥grade 4 (Wisconsin)) 
with concurrent BCVA< 20/60.

Development of deep-learning system. In the present study, we adopted a 
supervised deep-learning approach to developing a classification-based, deep-
learning model for the detection of visually significant cataracts. The primary 
inputs to the deep-learning model included preprocessed macula-centered retinal 
photographs and clinical labels (that is, visually significant cataract status). All 
retinal photographs were resized to dimensions of 224 × 224 pixels. Within the 
development set (80% randomly selected from the SIMES cohort), a fivefold 
crossvalidation was performed for fine-tuning of the model hyperparameters.

Overall, the framework of our algorithm comprises two parts: a deep 
convolutional neural network (CNN) serving as a feature extractor and a 
classification model (Supplementary Fig. 9). Specifically, a deep CNN, namely, 
the residual neural network (ResNet)-50, was first used to extract features from 
the retinal photographs33. The ResNet-50 had been pretrained on the ImageNet 
dataset34. The training retinal images were fed to the CNN model to extract their 
features, a process referred to as ‘feature extraction’. In this instance, 2,048 features 
were extracted from each training image. These extracted features, along with 
the ground truth clinical labels, were then used to classify the image through 
a classification model (XGBoost classifier) in which we applied an extreme 
gradient-boosting technique with the use of a scalable tree-boosting system35. 
The XGBoost method was based on a gradient-boosting approach, in which 
decision trees were gradually added, such that each subsequent tree reduced the 
error of the preceding ones35. This method aimed to prevent overfitting using 
the regularization techniques, parallelized tree building, tree pruning and other 
enhancement features35. The parameters for the XGBoost classifier, such as 
learning rate, minimum sum of instance weight needed, maximum depth of the 
tree and number of estimators, were chosen using the grid-search approach35, to 
minimize its crossvalidated classification error in the development set. In addition, 
as the dataset was imbalanced, we also adjusted the classifier parameters to balance 
the impact of positive and negative samples. Once the model had been trained, 
it was used for making predictions on the independent (that is, nonoverlapping 
with the development set) internal and external test datasets. The final output 
of the classification-based model was the probability for the presence of visually 
significant cataracts in each study eye. Details of the model development are 
described in Supplementary Note.

Comparison in performance with clinical experts. From external datasets of the 
SCES and SINDI, we further extracted a subtest set of 186 eyes, which consisted 
of 97 randomly selected eyes with nonvisually significant cataracts (selected 
from all negative cases), and 89 eyes with visually significant cataracts (selected 
from all eyes with visually significant cataracts). For each eye, we obtained 
referral suggestions from six clinical experts, including two professional graders 
(not including A.G.T. who performed the ground truth cataract grading for the 
SCES and SINDI datasets, and established the gold-standard reference for this 
evaluation) and four ophthalmologists (years of experience ranged from 1 year to 
7 years). In the initial round of evaluation, all experts were presented with just the 
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retinal images. During the second round of evaluation, the four clinicians were 
presented with the same set of retinal images, reshuffled, but with additional slit-
lamp photographs of each eye. The graders and our algorithm received only retinal 
images and were not involved in the second round of evaluation. We compared 
each of these performances (our algorithm and clinical experts) against the  
gold-standard diagnosis of a visually significant cataract, as defined in the  
previous section.

Saliency map. For better understanding of which regions of the retinal 
photographs were more likely to be used by the algorithm for prediction of normal 
eyes or eyes with visually significant cataract, we used the GradCAM method to 
generate saliency maps36. With these saliency maps presented as colored heatmaps, 
regions with greater contributions to the predicted output were highlighted with a 
‘hotter’ color on the heatmaps. The saliency maps were resized to 224 × 224 pixels2 
and layered over the retinal images. Details of the saliency map generation method 
have been described in Supplementary Note.

Statistical analysis. To evaluate the performance of the algorithm for binary 
classification of visually significant cataracts, we used AUROC, sensitivity and 
specificity. The classification threshold was selected based on Youden’s index37. 
We calculated the 95% CI for these performance measures, using 2,000 bootstrap 
replicates. We performed the statistical analyses using standard statistical software 
(STATA, v.16, Texas; R v.1.1.456).

To compare the performance of the algorithm with that of the group of 
clinical experts, we used metrics of sensitivity, specificity, accuracy and error rate. 
Accuracy was defined as the percentage of the total number of accurate predictions 
(that is, sum of true-positive and true-negative cases) out of the total number of 
predictions. The error rate was then calculated as 1 − accuracy.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
We used TensorFlow (v.1.14.0) for development of the algorithms, including 
packages such as Torch (v.1.8.0), Torchvision (v.0.9.0), OpenCV (v.3.4.3.18), scikit-
learn (v.0.20.02) and XGBoost (v.0.82). The testing code used in the present study 
can be accessed at https://doi.org/10.5281/zenodo.5650719. As the optimized 
algorithm is currently undergoing patent examination process, customized 
codes can be made available for research purpose from the corresponding author 
(C.-Y.C.) upon reasonable request. All requests for code will be reviewed by the 
SingHealth Intellectual Property Unit, to verify whether the request is subject 
to any intellectual property or confidentiality constraints. Any code that can be 
shared will be released via a Material Transfer Agreement for noncommercial 
research purposes under the Creative Commons Attribution NonCommercial-
NoDerivatives 4.0 license.

Data availability
The main data supporting the results in the present study are available within 
the paper and its supplementary information. The retinal images and patient 
information are not publicly available due to patient privacy and the data are 
meant for research purposes only. On reasonable request, de-identified individual-
participant data from the SIMES, SCES and SINDI datasets may be made available 
for academic purposes from the corresponding author (C.-Y.C.), subject to 
permission from the local institutional review board. Any data that can be shared 
will be released via a Material Transfer Agreement for noncommercial research 
purposes. Data from the BES dataset cannot be readily released due to patient 
privacy and the data are meant for research use only. Reasonable requests for data 
from the BES cohort should be made directly to J.J. (email: jost.jonas@medma.uni-
heidelberg.de) for consideration. Data can be made available for research purposes, 
subject to permission from the local institutional review board.
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