

List of Capstone Projects available for prospective students

(In alphabetical order)

S/N	Project Title
1	A gene regulatory network that controls carbohydrate utilization and facilitates epithelial
	cell binding in Streptococcus pneumoniae
2	A novel RNA structure-based mRNA design for genetic therapy and vaccination
3	Advancing longevity: CURATE.AI for Customized NMN Utilization And Treatment
	Enhancement (ACCURATE) clinical trial
4	Artificial intelligent identification of cancer driver mutations from human cancer genome
5	Bone Marrow-on-a-Chip for HSC-targeted Gene Therapy
6	Cancer Theranostics and Development of Novel Tracers for Multimodality Molecular
	Imaging and Targeted Radioligand Therapy in Combination with Immunotherapy in Multiple
	Types of Cancer
7	Characterising the molecular mechanisms of vaccine mutations for live attenuated flavivirus
	vaccines
8	Chemical synthesis of complex biological therapies
9	Deciphering the molecular mechanisms underlying steroid-induced increase in viral
	infections
10	Deciphering the potential of a synthetic derivative as an antiviral agent against dengue virus
11	Design and investigation of next-generation dumbbell-shaped DNA vectors and trans-
	splicing RNAs
12	Designing a delivery platform to enhance the bioavailability of extracellular vesicles for
	<u>cancer treatment</u>
13	Developing bat-inspired protein-based topical anti-inflammatory therapies for human skin
	Inflammatory diseases
14	Developing drug analogues of mitochondrial inhibitors as therapeutics
15	Developing novel RNA-based mitochondrial delivery vectors for mitochondrial targeting of
16	<u>nucleic acids towards mitochondrial gene therapy and for anti-aging</u>
10	<u>Development of a cross-species liver organoid model to identify hover drug targets for</u>
17	Development of a rapid whole-blood assay for the detection of T-cells against zoonotic
17	viruses
18	Development of Cancer Vaccines: RNA vaccine against public tumor antigens and
10	individualized negantigens
19	Discovery of Biomarker for the Detections of Enterovirus D68 infection
20	Discovery of ligands for membrane transporters to use for functional drug screening assays
21	DNA based non-viral gene therapy
22	Epigenetic Oncomutations regulating drug efficacy and carcinogenesis of colorectal cancer
23	Exploring the utility of inositols in modulating placental metabolism of lipids and inositol-
	derivatives in gestational diabetes
24	Extracellular vesicles (EVs) and EV-mimetic therapies for intervertebral disc regeneration
25	Extracellular vesicles deliver therapeutics targeting KRAS to for treatment of pancreatic
	cancer and metastasis

26	Extracellular vesicles delivering RNA therapeutics for inflaming the pancreatic tumor
	microenvironment for cancer immunotherapy
27	From AI to drug discovery for membrane transporters
28	Gene Modification Therapies targeting induced Pluripotent Stem Cells, Haemopoetic
	reprogramming and transplantation in a Humanized Murine Model: Therapeutic
	approached for Major Haemoglobinopathies
29	Harnessing CRISPR-Cas to Shape Modern Therapeutic Landscapes
30	Heparin-Artesunate Nanoparticle Delivery System for Enhanced Sorafenib Efficacy in
	Hepatocellular Carcinoma
31	Identification of a novel agent that can suppress proliferation, induce apoptosis and
	overcome chemoresistance in hepatocellular carcinoma
32	Identification of novel proviral host factors for positive-sense RNA viruses
33	Identification of novel small molecule compounds as autophagy regulators for treatment of
	<u>cancer</u>
34	Improved lipid nanoparticle technology for messenger RNA delivery and gene editing
35	Interdisciplinary Optogenetic in Eye and Brain
36	Investigate tumour complexity and drug response of peripheral T-cell lymphoma with
	subcellular resolution spatial multi-omics
37	Investigating the impact of inositol on uterine contractility in postpartum haemorrhage
38	Investigation of antiviral and host-directed combination therapy against coronavirus
	infection
39	Isolation and characterization of microbes from the human gut
40	Molecular epidemiology and evolution of human influenza viruses
41	New Therapeutic Strategy for Unmet Need in Neovascular Age-related Macular
40	Degeneration (nAMD)
42	Profiling genetic interactions in the numan pathogen Streptococcus pheumoniae
43	Regulation of DNA sensing and recognition in cancer
44	Regulatory role of DUSP4 In cancer and anti-cancer immunity
45	Targeting Protein Tyrosine Kinase 6 and Replication Stress Response to Enhance
16	Targeting RNA evenuelesce XRN1 to notentiate immune checknoint blockade therapy
40	Targeting sphingosing 1 phosphate transporters for treatment of inflammatory diseases
47	The secretome of HDV and HBV-specific T cells in HBV/HDV co.infected infected individuals
40	Unravelling the Underlying Immune Mechanisms, Drug Response, and Vaccine Response in
49	Influenza Infection Using Multi-omics and Al Approaches
50	Unveiling Metabolic Signatures: Nicotinamide Adenine Dinucleotide Levels In The SG90
50	Longitudinal Study Of Successful Aging
51	Utilization of microfluidics for discovery of antibody-based therapeutics against viruses and
	antimicrobial-resistant organisms
52	Vaccination/preexposure to COVID19 and susceptibility to influenza
53	Validating the role of Hedgehog signalling pathway as a therapeutic target in viral infections
_	

S/N	Principal Investigator	Project title with brief abstract
1	Dr Chris Sham Lok To	A gene regulatory network that controls carbohydrate
		utilization and facilitates epithelial cell binding in
	miclts@nus.edu.sg	Streptococcus pneumoniae
	Department of Microbiology	Despite a global vaccination effort and nearly a century of
	& Immunology	intensive research, Streptococcus pneumonia
		(pneumococcus) remains a major public health threat. The
		success of S. pneumoniae as a human pathogen can be partly
		attributed to the complex regulatory network in controlling
		gene expression in the nost. This network allows the bacteria
		to respond to the environment appropriately. A genetic
		polycascharida expression in proumosessus. Unexpectedly
		the screen reported two genes that regulate carbohydrate
		utilization and facilitate airway enithelial cell hinding. This
		project aims to elucidate the mechanism by which they
		function in the cell to promote virulence
		Domain(s): Infectious Diseases Management
2	Dr Volker Patzel	A novel RNA structure-based mRNA design for genetic
		therapy and vaccination
	micvp@nus.edu.sg	
		The principle of genetic therapy or vaccination relies on the
	Department of Microbiology	concept to deliver nucleic acids (DNA or RNA) coding for a
	& Immunology	therapeutic protein or antigen (viral or tumour antigen) into
		target cells in vivo. As DNA always harbours a theoretical risk
		of genomic integration, RNA-based therapeutics and vaccines
		are considered safer though their production is more difficult
		and costly. In vivo, RNA is readily degraded by ribonucleases
		and, nence, RNA vaccines have to be chemically modified
		design refers to the entimization of the primary structure
		(sequence) and typically comprises coden entimization, the
		elimination of cryptic splice sites. GC content optimization
		the elimination of miRNA hinding sites 5' canning 3'
		nolvadenvlation and for endogenously transcribed RNA the
		implementation of an intron and a post-transcriptional
		regulatory element. In addition, RNAs often are chemically
		modified to improve stability and delivery. However, the
		standard design does not consider intense secondary and
		tertiary RNA structure design.
		The aim of this project is to investigate a novel structure
		design for mRNA therapeutics and vaccines that improves
		RNA stability in the extracellular matrix and within cells, RNA
		translatability and transgene expression, and the efficiency of
		RNA encapsulation. By applying the RNA trans-splicing
		technology, gene expression can be rendered cell type

		specific In addition minimalistic dumbhell-shaped DNA
		vectors will be used to deliver such ontimised sequences
		Numbbell vectors are much more stable than RNA cheaper
		to produce, and allow us to target distinct period
		to produce, and anow us to target distinct populations of
		target cells or subpopulations of cells including immune cells
		to achieve a more tailored therapeutic effects or immune
		responses.
		The methods cover computational (in silico) RNA structure
		design, in vitro techniques including cloning, PCR, and RT-
		PCR, and experiments with tissue culture cells including
		transfection, nucleofection, reporter gene assays, functional
		assays, flow cytometry, confocal microscopy, gene expression
		and eventually with additional support studies in mice.
		This project is highly translational and can support the
		development of novel vectors for genetic therapy and
		vaccination
		Domain(s): Vaccinology and Immunotherapy, Applied Biomedicine
2	Prof Andrea Britta Maier	Advancing longevity: CLIBATE AI for Customized NMN
5		Itilization And Treatment Enhancement (ACCUBATE)
	a major@pus odu sg	clinical trial
	a.maier@nus.euu.sg	
	Dopartment of Modicine	Blood Nicotinamida Adonina Dinuclastida concentration
	Department of Medicine	(NADe) dealines with abranelogical ago in animals and
		(NADC) declines with chronological age in animals and
		numans. The dietary supplementation of Nicotinamide
		mononucleotide (NIVIN) has been shown to increase the level
		of NADc in the blood of middle-aged and older individuals;
		however, with high interindividual variability in the response.
		CURATE.AI is a platform for optimizing dosing. This study
		assesses the effectiveness of CURATE.AI dosing compared to
		conventional dosing of NMN in enhancing blood NAD
		concentrations and other aging-related biomarkers.
		Domain(s): Drug Discovery and Development, Applied Biomedicine
4	A/Prof Chen Ee Sin	Artificial intelligent identification of cancer driver mutations
		from human cancer genome
	<u>bchces@nus.edu.sg</u>	
		Advancement in genome-wide sequencing technology
	Department of Biochemistry	permits the sequencing of large amount of genome data of
		patients from almost every type of cancers. However, it is still
		an unsurmountable challenge to derive meaningful insights
		from this huge reservoir of information to impact clinical
		treatment. This project will attempt to use several
		approaches including Al-related protocol to look for cancer
		driver mutations in online cancer databases with focus on
		coloractal cancer. Depending on time, the student may be
		colorectal cancer. Depending of time, the student fildy be
		able to test the physiological impact of the mutations they
		nave identified in the yeast and/or cancer cells, which are
		good models for studying proliferation related regulations.

		Domain(s): Applied Biomedicine
5	A/Prof Citra Nurfarah binte	Bone Marrow-on-a-Chip for HSC-targeted Gene Therapy
	Zaini Mattar	
		We aspire to build human-relevant models of gene therapy
	<u>citramattar@nus.edu.sg</u>	that provide preclinical data at granular and multifaceted
		levels, to boost confidence in the success and safety of
	Department of Obstetrics &	clinical vectors. Human-animal differences significantly limit
	Gynaecology	extrapolation of physiological data to clinical trials, and
		human immunological and genotoxic effects are not always
		predicted from animals. We will design a human-derived
		Bone Marrow-on-a-chip (BMoC) for high-throughput analyses
		of haemopoletic stem cells following transduction with
		clinical gene therapy vectors at cellular and molecular levels,
		determining concomitant effects on bone marrow niche
		torget of these vectors
		Larget of these vectors.
6	Dr Zhang lingjing	Cancer Therapostics and Development of Novel Tracers for
0		Multimodality Molecular Imaging and Targeted Radioligand
	i.zhang@nus.edu.sg	Therapy in Combination with Immunotherapy in Multiple
	<u>I.e.nange nas.eduiss</u>	Types of Cancer
	Department of Diagnostic	
	Radiology	Cancer theranostics, an approach that integrates advanced
		diagnostic techniques with targeted therapy, revolutionizing
		the way we identify, treat, and monitor cancer. The word
		"theranostics" itself is a portmanteau of "therapeutics" and
		"diagnostics". The foundation of theranostics lies in
		personalizing patient care, ensuring that individuals receive
		the right treatment at the right time based on their unique
		physiological and molecular profiles; biomarkers, molecular
		imaging, imaging-guided therapy, and more integrated
		theranostic platforms are all part of the wider theranostic
		spectrum. Radiotheranostics with multimodality molecular
		imaging and molecular targeted radioligand therapy
		represents a promising advancement in both cancer
		diagnosis and treatment. Our NUS ineranostics centre of
		Excellence (ICE) Lab almed to spearnead the advancement of
		tochalogy developing new drugs translating discoveries
		into transformative clinical solutions, and foctoring
		interdisciplinary partnerships. The centre has a well-
		equipped research facility with an integrated imaging
		platform consisting of nanoSPECT/CT_nanoPET/MRI
		microPET/CT. Second Near-Infrared bioimaging (NIR-II) IVIS
		spectrum in vivo imaging system, ultrasound/photoacoustic
		imaging (PAI), and so on. It is also a leading platform for
		radiopharmaceutical development with a chemical synthesis

		unit, a radiolabelling hot lab (radio-HPLC, Radio-iTLC, gamma
		counter), a tissue culture room, and an animal holding room.
		Our research in the field of molecular imaging, particularly
		within cancer theranostics, is driving its way to use an
		integrated approach. The collective advancements in
		molecular imaging are ushering in a new enoch of medical
		troatmont
		Demain(s): Drug Discovery and Development
	A (Draf bratin Charlense blann	Characterising the medacular mechanisms of maxim
/	A/Prof Justin Chu Jang Hann	Characterising the molecular mechanisms of vaccine
		mutations for live attenuated flavivirus vaccines
	miccjh@nus.edu.sg	
		The mosquito-borne flaviviruses are a group of human
	Department of Microbiology	pathogens that pose a significant threat to human health and
	& Immunology	life. They include dengue virus, yellow fever virus, and Zika
		virus. Live attenuated vaccines have proven to be the most
		cost-effective method of preventing flavivirus infection.
		Flavivirus vaccine strains possess a good balance of
		attenuation and immunogenicity. This phenotype of
		attenuation and immunogenicity is driven by vaccine strain
		mutations that alter the molecular biology of the virus. This
		project will characterise the underlying molecular
		mochanisms of those vaccine strain mutations. Specifically
		this project will look at how those vession mutations affect
		this project will look at now these vaccine mutations affect
		the vaccine strain at various stages of the virus replication
		cycle. The project will also look how these vaccine mutations
		alter viral interaction with host factors and host pathways,
		especially the immune sensing and immune response
		pathway. This study will give us understand the molecular
		mechanisms that help flavivirus vaccine strains achieve their
		desired phenotype. This will help us design future vaccines
		for the mosquito-borne flaviviruses.
		Domain(s): Vaccinology and Immunotherapy, Infectious Diseases
		Management
8	Dr Chester Drum	Chemical synthesis of complex biological therapies
	mdccld@nus.edu.sg	Can chemical engineering and machine learning
		fundamentally change macromolecular creation? In this
	Department of Biochemistry	project you will use a novel set of technologies invented in
		our lab (Nature Comms PMID: 29129910) to create biological
		theraneutics using nure chemical synthesis. A centre nioco
		output is the first over chemical production of a therepoutie
		antibody and the application of this neural ansates to mail which
		antibody and the application of this novel process to multiple
		large-market therapeutics. The project is a continuation of
		research begun at Massachusetts Institute of Technology and
		funded by the Singapore MIT Alliance for Research and
		Technology (SMART). There is opportunity for multiple new
		patents and very high impact publications.

		Domain(s): Drug Discovery and Development, Vaccinology and
9	A/Prof Thai Tran	Deciphering the molecular mechanisms underlying steroid-
5		induced increase in viral infections
	nhstt@nus.edu.sg	
	photoe hastead.og	Due to its potent anti-inflammatory effects. GCs have been
	Department of Physiology	used to treat severe influenza infections. However, studies
	,	have shown that GCs increase IAV virulence and exacerbate
		disease-related mortality, making the use of GCs
		controversial. The underlying mechanism for this is attributed
		to the immunosuppressive properties of GCs; however, it is
		not well understood. Preliminary studies by our group
		demonstrated that CD151 levels in airway smooth cells are
		increased in a concentration-dependent manner when
		treated with GCs. These studies suggest potential CD151-
		related signalling events that drive GC-induced aggravations
		of IAV infection, independent of immunosuppression. Since
		GCs increase CD151 levels, and CD151 enhances IAV
		replication, GCs may enhance IAV replication through CD151-
		mediated mechanisms. Clinically, this would provide a
		IAV infections, offering insights into notential novel avenues
		for developing "better" GCs or informed GC treatment
		regimens. We hypothesize that the GC-induced increase in
		IAV replication, IAV titre, and disease-related mortality is
		CD151-mediated.
		Domain(s): Infectious Diseases Management, Drug Discovery and
		Development
10	A/Prof Justin Chu Jang Hann	Deciphering the potential of a synthetic derivative as an
		antiviral agent against dengue virus
	miccjh@nus.edu.sg	
	Department of Microbiology	Upon infaction, loads to the development of dengue fovor a
		potentially fatal disease which is endemic in over 100
	a minutology	countries especially in the tropical and subtropical regions
		DENV is mainly acquired by humans via bites of infected
		mosquitoes, Aedes spp in particular, which have resulted in
		at least 100 million cases of annual DENV infections and more
		than 20,000 deaths worldwide. Given the consistently high
		levels of active DENV infections, there is a dire need for an
		effective antiviral drug or prophylactic vaccine to combat this
		arboviral disease, which hitherto remain absent. Over the
		years, various natural compounds have been discovered to
		exhibit promising inhibitory effects against DENV replication.
		Subsequently, in order to identify the specific active group(s)
		involved in the observed efficacious antiviral properties,
		structure-based analyses involving different chemical

		modifications of the parent compounds were performed with the aim of improving their bioavailability, toxicity and antiviral profiles. In this study, a synthetic derivative of a natural compound will be screened for its in vitro cytotoxicity and anti-DENV inhibitory effects in mammalian cell lines. The compound will then be subjected to different biological and
		biochemical mechanistic assays to identify the specific
		stage(s) of DENV replication cycle and target protein(s) on which it events its aptiviral activity. The outcome of this study
		will provide more in-depth insight into the potential anti-
		DENV properties exhibited by the synthetic derivative of
		interest as well as the underlying mechanism(s) involved.
		Domain(s): Infectious Diseases Management, Drug Discovery and
11	Dr Volker Patzel	Design and investigation of next-generation dumbbell-
		shaped DNA vectors and trans-splicing RNAs
	micvp@nus.edu.sg	
		Spliceosome-mediated RNA trans-splicing represents a form
	& Immunology	of alternative splicing in which sequences from two distinct
	a minunology	produce chimeric RNAs and proteins. As trans-splicing
		enables labeling and reprogramming of genetic information
		at the level of the pre-mRNA, researchers have been
		exploring trans-splicing for diagnostic or therapeutic
		interventions. We developed and tested a novel trans-
		splicing RNA design. Compared with the previous state-of-
		improved activity and about 10-fold higher on-target
		specificity. We are currently using RNA trans-splicing to
		achieve cell type specificity of gene expression. For cellular
		delivery of trans-splicing and other RNAs, we developed safe,
		non-integrating dumbbell-shaped DNA minimal vectors
		which exhibit 10-100-fold enhanced nuclear targeting and
		gene expression compared with plasmids and conventional
		primary cells and trigger prolonged transient expression
		The aim of this project is to use RNA secondary structure
		design to further improve the trans-splicing RNAs, to explore
		synergies between the RNA trans-splicing technology and
		other RNA technologies such as RNA interference, CRISPR Cas
		genome editing, or mitochondrial delivery vector
		dumbbell-shaped DNA to deliver these PNAs into target cells
		The methods cover computational (in silico) RNA structural
		design, in vitro techniques including cloning, PCR, RT-PCR.
		and dumbbell production, and experiments with tissue
		culture cells including transfection, nucleofection, reporter

		gene assays, flow cytometry, confocal microscopy and
		functional assays.
		These technologies can have high impact towards the
		development of novel genetic therapies of vet incurable
		human diseases
		Domain(s): Applied Biomedicine
12	Dr Le Thi Nguyet Minh	Designing a delivery platform to enhance the bioavailability
12	Di Le minguyet mini	of ovtracellular vosicles for cancer treatment
	nholtam@nuc.odu.cg	
	photometrus.edu.sg	
	Department of Dhomesonlagy	Excludential vesicles (EVS) serve as highly promising carriers
	Department of Pharmacology	tor derivering nucleotide-based therapeutics for cancer
		treatment, particularly in delivering antisense
		oligonucleotides to target specific mutations in cancer cells.
		However, systemic administration of EVs into living bodies
		have shown limited circulation time in the bloodstream and
		low accumulation in tumours, hindering their clinical
		translation. The short half-life of EVs is primarily due to their
		phagocytosis by mononuclear phagocyte systems (MPS),
		leading to their accumulation and degradation in livers and
		spleens. To enhance EVs' efficacy in cancer therapy, this
		project aims to develop a micro-nano-hybrid delivery
		platform, shielding EVs from MPS phagocytosis and
		enhancing the therapeutic efficacy of loaded agents against
		cancers.
		Domain(s): Drug Discovery and Development
13	Prof Wang Linfa	Developing bat-inspired protein-based topical anti-
		inflammatory therapies for human skin inflammatory
	linfa.wang@duke-nus.edu.sg	diseases
	Duke-NUS Medical School	Bats are the only flying mammals capable in hosting
		numerous viruses asymptomatically with no/minimal sign of
		diseases. Previous studies from our lab demonstrated altered
		inflammasome in bats including genomic loss of PYHIN genes
		(Sci Rep 2016), dampened NLRP3 expression (Nat Micro
		2019) and reduced Caspase-1 and cleavage of IL-1b activities
		(PNAS 2020). The recent work from our lab (Cell 2023) has
		shown that bat ASC2 is a powerful negative regulator of
		inflammasomes. We further identified four key residues
		responsible for bat ASC2's gain-of-function. By incorporating
		these key residues, we developed a patented modified
		human ASC2, called hupa4 ASC2, with high potency of
		inflammasome inhibition. For this project, we aim to develop
		an effective tonical anti-inflammatory theranies for human
		skin inflammatory diseases based on huno4 ASC2 via
		different methods of delivery. Mouse in vive study will be
		norformed and nationt skin bionsy samples will be collected
		performed and patient skin blopsy samples will be collected
		to validate our drug candidates in this areiget

		Domain(s): Drug Discovery and Development
14	Dr Cheok Chit Fang	Developing drug analogues of mitochondrial inhibitors as
		therapeutics
	patcfc@nus.edu.sg	
		While metabolic changes characteristic of tumours were
	Department of Pathology	known nearly a century ago, understanding of cancer cell
		metabolism has undergone a resurgence in the past decade.
		A number of metabolic inhibitors have recently entered
		clinical trials for treatment of advanced and refractory
		cancers. We recently identified a metabolic pathway
		selectively targeting p53-defective cancers. We discovered
		and apontosis in p52 defective cancers, elucidating a first in-
		class mechanism exploiting this class of inhibitors against n53
		mutations (that occur in more than 50% of all cancers). The
		purpose of this project is to further develop this concept, by
		adopting chemical screens as well as targeted development
		of drug analogues.
		Domain(s): Applied Biomedicine
15	Dr Volker Patzel	Developing novel RNA-based mitochondrial delivery vectors
		for mitochondrial targeting of nucleic acids towards
	micvp@nus.edu.sg	mitochondrial gene therapy and for anti-aging
	Department of Microbiology	Defects of all protein-coding mitochondrial genes have been
	& Immunology	associated with numan, mainly neurodegenerative disorders
		defect mitochondrial genomes (beteronlasmy) and defects
		accumulate with aging. Mitochondrial gene therapy could
		provide cure of mitochondrial disease and dysfunction but is
		hampered by the lack of an efficient mitochondrial gene
		delivery system. We developed an efficient novel scalable
		mitochondrial targeting vector based on RNA subdomains of
		a long non-coding viral RNA. We demonstrated that this
		vector system can efficiently target functional recombinant
		coding (mRNA) or non-coding (antisense) RNA to the
		mitochondria resulting in mitochondrial gene expression or
		knockdown of gene expression. Here, we will further improve
		and explore this novel mitochondrial derivery vector system
		The aim of this project is to improve the mitochondrial
		targeting vectors and to explore them for mitochondrial
		delivery of healthy gene functions and or of the CRISPR Cas
		system to selectively destroy defect mitochondrial genomes.
		A first medical target will be Lebers Hereditary Optic
		Neuropathy LHON, an orphan disease that causes sudden
		blindness in young adults.

		The methods cover computational (in silico) RNA structural design, in vitro techniques including cloning, PCR, RT-PCR, the CRISPR/Cas technology, and experiments with tissue culture cells, eventually cybrids, and Rho-zero cells including transfection, nucleofection, and reporter gene assays.
		The approach may help to prevent/restore LHON-associated
		therapy of yet incurable human diseases and for anti-aging.
		Domain(s): Applied Biomedicine
16	Prof Wang Linfa	Development of a cross-species liver organoid model to
	linfa wang@duka_nus adu sa	Identify novel drug targets for mitigating liver insulin
	Inna.wang@uuke-nus.euu.sg	
	Duke-NUS Medical School	Liver insulin resistance is a critical component of metabolic disorders such as type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Both experimental and epidemiological evidence have established a causative link between modern diets rich in simple sugars, particularly fructose, and the development of peripheral tissue insulin resistance. Novel approaches for targeting liver insulin sensitivity or inhibiting the onset of insulin resistance are urgently needed. In the mammalian kingdom, a diet primarily relying on the nectar of angiosperm flowers, termed nectarivory, is exceptionally rare. A small number of bat species, including Eonycteris spelaea—the key model organism under research in the laboratory of Prof. Wang Lin-Fa—are specialist nectarivores. Nectar has a high concentration of fructose and sucrose (a disaccharide containing fructose). It is hence hypothesized that E. spelaea has evolved specific mechanisms to avoid the development of liver insulin
		resistance. Liver organoids generated from adult primary tissue are a recent development which provide a physiologically relevant platform for studying disease mechanisms and drug discovery. In this study, we will first establish and characterize liver organoids derived from both mouse and E. spelaea liver tissue. By exposing these organoids to insulin resistance-inducing conditions and performing high- throughput screening, we aim to uncover species-specific and conserved mechanisms of liver insulin resistance. This comparative approach leverages the unique metabolic adaptations of E. spelaea, providing insights that are not possible with traditional mouse models alone, and seeks to identify novel drug targets for improving insulin sensitivity in humans. Domain(s): Drug Discovery and Development

17	Prof Antonio Bertoletti	Development of a rapid whole-blood assay for the detection
		of T-cells against zoonotic viruses
	antonio@duke-nus.edu.sg	
		Emerging infections pose a significant burden on the
	Duke-NUS Medical School	healthcare systems and economic loss for societies
		worldwide as exemplified by the COVID-19 pandemic.
		Early detection of spill over events is critical to informing
		coordinated responses but existing surveillance platforms are
		based on molecular methods and bosnitalised natients, and
		therefore fail to canture early cases and those with
		asymptomatic or mild infection. In addition, the incidence of
		nast infection in defined populations is often evaluated by
		survey detecting antibodies against the pathogen. T cells
		against viruses have been instead rarely evaluated for clinical
		against viruses have been instead failing evaluated for clinical
		complexity of conventional T cell assays. However, antigen
		complexity of conventional 1-cell assays. However, antigen-
		specific memory 1-cell responses against SARS-COV-2 have
		were either pover detected or waned within weeks post
		infaction, particularly in individuals with asymptomatic
		infection, particularly in individuals with asymptomatic
		intections. Serosurveys also undercount intections with other
		viruses, such as MERS-COV, where I cell responses were
		Tound to be present in seronegative individuals.
		The aim of the study is to develop 1 cell assays specific for
		zoonotic viruses and test their ability to detect individuals
		who have been infected with such viruses.
		We will design pools of peptides covering different proteins
		of distinct zoonotic viruses (i.e. Avian influenza, Bunjaviridae)
		and test their ability to detect I cells in individuals with
		known or unknown contact with such viruses with
		conventional (ELISPOT or Intracellular cytokine staining) or
		rapid cytokine detection in whole blood. Serological assays
		will also be performed to understand whether T cells might
		be better suited to define previously infected populations.
		Domain(s): Vaccinology and Immunotherapy, Infectious Diseases
10	Dr. Ding Linguage	Management
18	Dr Ding Lingwen	Development of Cancer vaccines: RNA vaccine against
	patdl@pus.odu.sg	public turnor antigens and individualized neoantigens
	patenee nus.cou.sg	Immune checknoint blockade antibodies, such as anti-PD1
	Department of Pathology	antihody have dramatically altered the therapeutic
		landscape of many cancers and have recently become the
		first-line therapy for several major cancers. Despite the
		remarkable achievements the response rate is relatively low
		(10-20%) and only a subset of nationts can benefit from the
		treatment. Mechanistic studies suggest that the preoxistence
		of tumor antigen recognition T cells is the key to the success

		of PD1 immunotherapy. Among the different strategies developed to overcome PD1 resistance, cancer vaccines show great promise to elicit T cell responses against cancer-specific antigens, converting 'cold' tumors to 'hot' tumors and thus improving PD1 antibody therapy. In this study, we will develop a circular mRNA-LNP (lipid nanoparticle encapsulated circular mRNA) vaccine platform to generate RNA vaccines against the most prevalent, experimentally verified common cancer antigens (e.g., neoantigens derived from hotspot mutations of TP53, KRAS, and PIK3CA and tumor-associated antigens). This platform features our improved mRNA design (such as motifs to enhance MHC presentation and mRNA translation/stability). Based on TCGA pan-cancer sequencing data, over 10% of (pan)cancer patients harbor at least one of the above mutations and may benefit from our cancer vaccine. The therapeutic effect of the generated mRNA-LNP vaccine will be verified using
		syngeneic murine models and humanized murine models. Domain(s): Vaccinology and Immunotherapy, Drug Discovery and Development
19	A/Prof Justin Chu Jang Hann	Discovery of Biomarker for the Detections of Enterovirus
	miccjh@nus.edu.sg	
20	Department of Microbiology & Immunology	Enterovirus D68 (EV-D68) has garnered attention over the recent past years with global outbreaks of Acute Respiratory Infection (ARI) in the American and East Asia Region. In paediatric cohort, EV-D68 can cause hospitalization and fatality due to asthma exacerbation and acute flaccid myelitis. There are no effective vaccines and antiviral drugs, research in the development and evaluation of Enterovirus D68 is much needed as pandemic preparation against future outbreaks in Singapore. This project takes a novel approach to engage in single cell RNA sequencing analysis of organotypic culture to identify novel pathways and biomarker using that can be purposed as disease identifier and possible drug targets. <i>Domain(s): Infectious Diseases Management, Applied Biomedicine</i>
20	A/Prof Nguyen Nam Long	Discovery of ligands for membrane transporters to use for
	bchnnl@nus.edu.sg	Tunctional drug screening assays
	Department of Biochemistry	The project here is to discover the small molecules for membrane transporters and use this discovery knowledge for developing functional assays for drug discovery.
21	Dr Shi Jiahai	DNA based non-viral gene therapy
	jh.shi@nus.edu.sg	

	Department of Biochemistry	The traditional production of DNA depends on bacteria, which requires 3-4 weeks for production and subsequently requires extensive purification, which may still give rise to traces of bacterial endotoxins. We aimed to develop a cell- free DNA synthesis system and does not require the presence of bacterial element. Compared to mRNA therapy, DNA therapy offers prolonged effectiveness and stable expression over time. However, DNA-based gene therapy faces challenges in achieving efficient nuclear entry, primarily due to barriers such as endosomal entrapment, cytosolic sequestration, and nuclear exclusion. To address these issues, we utilize red blood cell extracellular vesicles (RBCEVs) as delivery vehicles for the DNA cassette. RBCEVs are promising due to their high biocompatibility with various cell types and their potential to penetrate multiple cellular and organelle membranes. By leveraging RBCEVs, this project aims to mitigate the current limitations of non-viral DNA gene therapy, particularly focusing on overcoming endosomal trapping and avoiding the drawbacks associated with viral delivery vectors, such as immunogenicity and potential integration risks. <i>Domain(s): DNA gene therapy</i>
22	<u>A/Prof Chen Ee Sin</u>	Epigenetic Oncomutations regulating drug efficacy and carcinogenesis of colorectal cancer
	bchces@nus.edu.sg	
	Department of Biochemistry	Epigenetic is a mechanism that is imposed over the genetic (DNA seqeunces) control of the genome. This mechanism determines the usage of the genomic sequences and such regulation is often compromised during cancer development that result in uncontrolled proliferation and metastasis of the cancer cells. Due to the importance of epigenetic regulation, it is not unexpected that many mutations have been shown to facilitate cancer initiation. Many of these mutations exist in enzymes that catalyses the addition or removal of 'epigenetic marks' on the chromatin. In this project, we will study one particular class of epigenetic regulators that act on the scaffolding that wraps and organize the DNA, called histones. Using bioinformatics tools, including some artificial intelligent-assisted ones, we will identify cancer driver mutations, with focus on colorectal cancer. <i>Domain(s): Applied Biomedicine</i>
23	A/Prof Chan Shiao-yng	Exploring the utility of inositols in modulating placental metabolism of lipids and inositol-derivatives in gestational
	obgchan@nus.edu.sg	diabetes
	Department of Obstetrics &	Gestational diabetes affects around 1 in 5 pregnant women
	Gynaecology	in Singapore. Many studies demonstrate that maternal

		hyperglycaemia perturbs placental lipid metabolism, which
		has consequences for fetal growth and developmental
		programming of future boalth outcomes for the offenring
		programming of future flearch outcomes for the onspring
		postnatany. Current treatments such as metrormin and
		insulin, while able to regulate maternal glycaemia well, can
		have undesired effects for long-term offspring health or are
		difficult to administer. Hence, there is a need for alternative
		therapies. Inositols belong to the class of nutraceuticals and
		some inositol isoforms have shown promising effects in
		improving insulin sensitivity. However, their impact on
		placental lipid metabolism remains poorly understood. The
		candidate will examine how different inositol isomers affect
		placental lipid metabolism using a variety of techniques
		including in vitro placental cultures, molecular biology and
		liquid chromatography-mass spectrometry (LC-MS).
		Domain(s): Drug Discovery and Development. Nutraceuticals
24	A/Prof Toh Wei Seong	Extracellular vesicles (EVs) and EV-mimetic therapies for
2 .	<u>A A A A A A A A A A A A A A A A A A A </u>	intervertebral disc regeneration
	tobws@pus edu sg	
		Low back pain (LBP) is a leading cause of disability that
	Department of Orthonaudic	imposes an onermous socioeconomic burden. With looming
	Surgery	throat of an over aging population, the provalence of LRP is
	Surgery	increasing drastically and is actimated to affect > 00% of
		increasing drastically and is estimated to affect >90% of
		people over 50 years of age. The major cause of LBP is
		intervertebral disc (IVD) degeneration that can further
		aggravate and give rise to severe spine problems. Current
		treatments that include physiotherapy, anti-
		inflammatory/analgesic medication, and surgery may relieve
		the symptoms and reduce disability to a limited extent, but
		do not repair the degenerated IVD. Thus, there is an unmet
		need for development of disease-modifying therapies that
		can effectively alleviate IVD pain, inflammation, and
		degeneration to facilitate IVD repair and regeneration. Our
		research team has long-standing interest on the design and
		development of next-generation extracellular vesicles (EVs)
		and EV-mimetics as immunotherapeutic agents against
		musculoskeletal disorders such as osteoarthritis, sarcopenia
		and IVD degeneration. We recently reported that EVs from
		mesenchymal stromal cells (MSCs) are immunomodulatory
		with the ability to enhance M2 over M1 macrophage
		polarization through CD73/ecto-5'-nucleotidase activity. To
		overcome the issues of isolation yield and laborious
		purification process with pativo EV/s, we have further
		doveloped EV mimotic strategies with the generation of
		mercenhage membrane sected reneratibles and sell
		macrophage memorane-coated nanoparticles and cell-
		derived nanovesicies (fused with liposomes) as EV-mimetics,
		and demonstrated comparable biophysical properties,

		biochemical compositions, and pharmacological activities as
		their parental EVs. Based on these prior studies, we
		hypothesize that EVs and their mimetics have similar
		biophysical and biochemical properties and exhibit
		comparable immunomodulatory effects beneficial for IVD
		, regeneration.
		Domain(s): Vaccinology and Immunotherapy, Drug Discovery and
		Development, Applied Biomedicine
25	Dr Le Thi Nguyet Minh	Extracellular vesicles deliver therapeutics targeting KRAS to
		for treatment of pancreatic cancer and metastasis
	phcltnm@nus.edu.sg	
		Pancreatic cancer is the fourth most significant cause of
	Department of Pharmacology	cancer-related death globally. Pancreatic ductal
		adenocarcinoma (PDAC) is the most common histological
		type of pancreatic cancer, which ranks among the most lethal
		cancer entities, has a poor prognosis with a 5-year survival
		rate of 5%. PDAC metastasis most commonly occurs in the
		liver and peritoneum, causing morbidity and mortality of
		patients with no effective treatment options. Mutations in
		the GTPase KRAS are commonly encountered in PDAC and
		these drive initiation, progression and metastasis. Here we
		investigate whether extracellular vesicles (EVs) can function
		as efficient carriers of antisense oligonucleotides (ASOs)
		targeting oncogenic KRAS and sought out to develop direct
		and specific treatment for PDAC and mestatasis
		Domain(s): Vaccinology and Immunotherapy. Applied Biomedicine
26	Dr Le Thi Nguyet Minh	Extracellular vesicles delivering RNA therapeutics for
		inflaming the pancreatic tumor microenvironment for
	phcltnm@nus.edu.sg	cancer immunotherapy
	Department of Pharmacology	Pancreatic cancer is the leading cancer-caused death with
		few therapeutic targets and poor effective treatments.
		Recently, tremendous attention has been paid to RNA-based
		therapeutics, including small interference RNAs (siRNAs) and
		antisense oligonucleotides (ASOs), due to their great
		potential in specifically targeting numerous undruggable
		oncogenes. This project aims to employ red blood cell-
		derived extracellular vesicles (BBCEVs) as a delivery vehicle
		for ASOs to specifically target driver mutations in pancreatic
		cancer Additionally we seek to co-deliver
		immunomodulatory RNA (immRNA) that hinds to retinoic
		acid-inducible gene L recentor (RIG-I) to activate the RIG L
		nathway in nancreatic cancer cells, resulting in IENs mediated
		anti-tumor polarization
		and-tumor polarization.
		Development
27	A/Prof Nguyen Nam Long	From AI to drug discovery for membrane transporters
- '		

28	bchnnl@nus.edu.sg Department of Biochemistry <u>A/Prof Citra Nurfarah binte</u> <u>Zaini Mattar</u> <u>citramattar@nus.edu.sg</u>	Membrane transporters are great drug targets. Some of the known drug targets such as SGLT2, neuronal neurotransmitter transporters such as VMAT2 has been exploited for drug development. Our lab is interested in screening drugs such as small molecules for several transporters that we have discovered. <i>Domain(s): Drug Discovery and Development</i> Gene Modification Therapies targeting induced Pluripotent Stem Cells, Haemopoetic reprogramming and transplantation in a Humanized Murine Model: Therapeutic approached for Major Haemoglobinopathies
	Department of Obstetrics & Gynaecology	β-thalassaemia major (βTM) is challenging to correct with gene therapy as there are >300 causative point mutations. Current gene modification therapies (GMT) require ex vivo haemopoetic stem cell (HSC) transduction using integrating vectors delivering the β-globin transgene or CRISR/Cas9 editing tools, increasing cost and morbidity from autologous transplantation. In vivo GMT pose different challenges, including low-efficacy HSC transduction with non-integrating vectors. We are currently developing HSC-targeting adeno- associated viral vector (AAV)-mediated in vivo base editing strategies to precisely correct point mutations causing transfusion-dependent βTM, but despite the widespread application of in vivo AAV-mediated GMT in clinical trials for diverse diseases, we acknowledge the significant concerns regarding the immunotoxicity of high-dose AAV. Additionally, HSC-directed gene editing is challenging due to low transduction efficacy and the paucity of true long-term repopulating stem and progenitor cells (<0.01% in peripheral blood). We have formulated an alternative strategy for HSC gene editing that combines patient-derived induced pluripotent stem cells (IPSC), base editing and vector technologies. This stems from our current data that demonstrate the low efficacy of transducing HSC with single-strand ssAAV6, the serotype identified in screening studies as having the most tropism for HSC, which has a payload too small to carry large base editing tools, necessitating alternative strategies such as split-intein AAV. This restriction drives us to explore alternative vehicles to achieve HSC correction, including lipid nanoparticles (LNP) and non-integrating viral vectors (NILV) that have larger payloads for carrying large base editors. NILV offer the promise of higher HSC targeting efficacy without integration mutagenesis while LNP can be modified to improve cell targeting while reducing immunotoxicity.

		We have produced IPSC from oral epithelial cells and
		peripheral blood mononuclear cells, and have had initial
		success with reprogramming IPSC to HSC. IPSC being
		developmentally immature are more efficiently transduced,
		edited and expanded than are HSC. In response to some of
		the difficulties producing and using AAV for gene editing, we
		will explore customizable non-integrating lentiviral vectors
		(NILV) and lipid nanoparticles (LNP) for HSC-directed GMT.
		We are also producing base editors specific to the most
		common Asian BTM-causing point mutations, and with this
		we can offer off the chelf personalised CMT
		We propose to genetically edit patient derived IPSC carrying
		we propose to generically early patient-derived IPSC carrying
		specific B-globin mutations in vitro with the appropriate base
		editors delivered by AAV6, non-integrating lentiviral vectors
		or lipid nanoparticles, to compare transduction efficacies.
		These corrected IPSC (screened out for incorrect editing and
		off-target mutations) will be expanded and reprogrammed
		into HSC carrying the normal β -globin gene. Reprogrammed
		HSC will be assessed in vitro and in vivo for haemopoetic
		phenotype, multilineage differentiation, engraftment and
		repopulating function via primary and secondary
		transplantation in a humanized mouse model. On- and off-
		target mutations and editing efficacy will be assessed in both
		IPSC and reprogrammed HSC.
		This proposed approach will allow patient-derived gene-
		edited IPSC to be used as GMT vehicles, corrected in vitro
		and reprogrammed to HSC that carry the patient's unique
		epigenetic markers and can be autologously transplanted.
		offering a viable alternative to in vivo GMT and ex vivo HSC
		GMT and expanding the library of molecular therapies for
		haemoglohinonathies
		Domain(s): Applied Biomedicine
29	Dr Hu Chunvi	Harnessing CRISPR-Cas to Shane Modern Theraneutic
23	<u>Britia citalityi</u>	Landscanes
	hu dhs@nus edu sa	
		The CRISPR-Cas system has emerged as a revolutionary tool
	Department of Biochemistry	in genetic engineering offering unprecedented precision in
	Department of Dioenemistry	gene editing. This proposal evplores the transformative
		notontial of CPISPP. Cas tochnology in the dovelopment of
		potential of entitie stratogios. By loweraging its canability to
		modify gonatic material with high accuracy we aim to
		address genetic disorders, enhance disease resistance, and
		audress genetic disorders, enhance disease resistance, and
		create personalized medicine approaches. Our research will
		Tocus on optimizing CRISPR-Cas delivery methods, improving
		target specificity, and minimizing off-target effects to ensure
		satety and efficacy. Additionally, we will investigate its
		applications in various therapeutic contexts, including cancer

		treatment, neurodegenerative diseases, and rare genetic conditions. Through rigorous experimentation and clinical trials, we aspire to demonstrate the feasibility and benefits of CRISPR-Cas-based therapies. This work promises to reshape the landscape of modern therapeutics. offering hope for
		more effective and tailored treatments, ultimately improving patient outcomes and advancing the field of precision
		medicine. Domain(s): Drug Discovery and Development, Infectious Diseases Management, CRISPR-Cas, Gene-editing
30	Dr Cui Jianzhou	Heparin-Artesunate Nanoparticle Delivery System for
		Enhanced Sorafenib Efficacy in Hepatocellular Carcinoma
	<u>ciz@nus.edu.sg</u>	
	Madiaina Daan'a Office	Sorafenib is a multikinase inhibitor that promotes apoptosis,
	Immunology Translational	nnibits angiogenesis, and suppresses tumor cell proliferation. It is currently an effective first-line therapy for
	Research Programme	late-stage hepatocellular carcinoma (HCC). However, its
		clinical applications are significantly restricted due to poor
	A/Prof Lim Hsiu Kim, Lina	solubility, rapid metabolism, and low bioavailability. To
		address these challenges, the use of nanoparticles to
	linalim@nus.edu.sg	Improve drug targeting, enhance therapeutic efficacy, and
	Department of Physiology	prevalent.
		Our previous data have shown that nanoparticles
		encapsulating sorafenib can significantly improve in vivo
		distribution within tumors and suppress tumor growth in
		mice. In this project, we aim to utilize our well-characterized
		sorafenib to investigate the underlying mechanisms by which
		this NP system effectively overcomes sorafenib resistance in
		HCC both in vivo and in vitro. Additionally, we will explore
		potential targets of sorafenib through transcriptome data
		analysis during the tumor suppression process. Furthermore,
		depending on time, we will investigate the combination of cytotoxic chemotherapeutic agents and molecular targeted
		agents, such as those targeting EGFR and the
		PI3K/AKT/mTOR signaling pathway, to further enhance the
		efficacy of NP-encapsulated sorafenib in overcoming drug
		resistance.
21	A/Prof Gautam Sothi	Domain(s): Drug Discovery and Development
		proliferation, induce apoptosis and overcome
	phcgs@nus.edu.sg	chemoresistance in hepatocellular carcinoma
	Department of Pharmacology	In association with the dissemination of hepatitis B and C
		sixth most common cancer and the third leading cause of
	1	size most common cancer and the third redding cause of

		cancer-related deaths worldwide [1]. The prevalence of this
		cancer is expected to increase by 55% from 2020 to 2040.
		Although surgery remains to be the first choice for HCC.
		tumor size henatic functional reserve and/or nortal
		hypertension may all restrict surgical ablation. Multi-targeted
		tyrosing kingso inhibitors (TKIs) including sorafonih
		Lanustinih, and reservationih have been entrouved for sustamin
		tenvalinib, and regoratering have been approved for systemic
		treatment of advanced HCC, but overall survival benefits
		have been relatively modest and highlight the unmet medical
		need among patients with HCC. Therefore, the need to
		develop novel therapeutic strategies for HCC is of paramount
		importance.
		Hence, the project aims to identify a novel agent that can
		inhibit proliferation, induce apoptosis and overcome
		chemoresistance in different HCC cell lines. The agent will be
		identified by screening small molecule inhibitors library
		available in the laboratory. The effect of identified agent on
		signaling pathways that contribute to survival and
		chemoresistance in HCC will also be investigated in detail.
		Furthermore, detailed investigation, using, in vivo HCC mice
		models will be carried out. The potency of novel agent will
		also be teste din combination with some of the existing
		therapies for HCC. Overall this project will lead to discovery
		of a novel drug that can help to enhance treatment efficacy.
		reduce toxicity and overcome chemoresistance in HCC
		natients
		Domain(s): Drug Discovery and Development Infectious Diseases
		Management
32	A/Prof Justin Chu Jang Hann	Identification of novel proviral host factors for positive-
		sense RNA viruses
	miccih@nus.edu.sg	
		Positive-sense RNA viruses consist of many medically
	Department of Microbiology	important human pathogens which have resulted in multiple
	& Immunology	significant outbreaks across the globe. To facilitate effective
		virions production from infected cells. RNA viruses actively
		hijack and utilize host cell metabolism to support viral life
		cycles and to medulate best antiviral defense mechanisms
		Provious studios have shown that PNA viruses form
		replication complexes made up of viral and best proteins
		replication complexes made up of viral and nost proteins,
		indicating the significant role(s) of cellular component(s) in
		successful completion of intracellular virus replication.
		Hence, this study aims to identify crucial interactions
		between specific host factor(s) with viral protein(s) or
		genomic contents, which promote the replication capacity of
		selected positive-sense RNA viruses. Target host protein(s)
		will be overexpressed in human cell lines using mammalian
		expression vectors harbouring tagged coding sequence(s) of

		respective gene(s) of interest. Viral components (proteins or
		RNA) bound to the specific host factor(s) will be identified via
		pulldown assays followed by western blot or RT-PCR. The
		potential of respective host pathway(s) as antiviral targets for
		specific positive-sense RNA viruses will be subsequently
		evaluated using chemical or siRNA inhibitors
		Domain(s): Drug Discovery and Development
22	A/Prof Gautam Sethi	Identification of novel small molecule compounds as
55	ArrorGadtamSetm	autonhagy regulators for treatment of cancer
	phogo@puc odu cg	autophagy regulators for treatment of cancer
	phegs@hus.edu.sg	Concer is one of the leading sources of mortality which
	Department of Dhowseeless	cancer is one of the reading causes of mortality which
	Department of Pharmacology	accounts around ten million deaths per year globally.
		Regardless of various treatment strategies including surgery,
		chemotherapy and radiotherapy are available for cancer
		treatment still, it is quite challenging due to its recurrence
		supported by therapy resistance and stemness. In this
		connection, autophagy, the self-cannibalism process can act
		as a potentially effective strategy for treatment of cancer. In
		cancer, autophagy acts as a double-edged sword at the
		interface of cell survival and cell death in a context-
		dependent manner based on cancer type, stage, and cancer
		genetics. Its pro-survival activity helps the cancer cells to
		survive under nutrient depletion conditions by adopting
		various mechanisms such as remodeling metabolism,
		resistant to therapeutics through inducing apoptosis
		resistance, resistance to anoikis, and genome integrity and so
		on. Alternatively, the pro-death functions kill cancer cells
		which is mediated in response to oxidative stress,
		accumulation of protein aggregates and degradation of a cell
		survival proteins. Therefore, there is a great effort in
		developing small molecule drugs for inducing toxic autophagy
		or blocking pro-survival autophagy that can result in effective
		theraneutic strategy against cancer. Thus, the current project
		aims to screen the small molecule anticancer compounds
		available in the laboratory for autophagy induction in cancer
		coll lines. Then the nature of autophagy induction in cancer
		contributing to coll curvival or coll doath will be investigated
		at the molecular level in vitro and in vive models
		at the molecular lever in vitro driu in vivo mouers.
		Immunotherany
3/	Dr Ni Qiangian	Immunotherupy
54		delivery and gene editing
	ngian ni@nus edu sg	
	gqianime nas.cau.sg	Among various nucleic acids theraneutics (i.e. antisense
	Department of Diagnostic	oligonucleotides (ASO) small interfering PNA (siPNA) DNA
	Radiology	adjuvants) messanger RNA (mPNA) is no doubt one of the
	Γαυιουχγ	aujuvants), messenger KNA (mKNA) is no doubt one of the
		most promising therapeutic modalities as billions of

		administered doses of COVID-19 mRNA vaccines have convinced its safety and efficacy. The advances of mRNA technology have also enabled successful protein replacement therapies with some of the cases are already in early clinical trials for the treatment of a broader range of diseases beyond infectious diseases and cancer vaccinations. Specifically, clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing systems represent a promising therapeutic strategy for correction of gene mutations, which is of great interest in prevention and treatment of diseases. Systemic delivery of CRISPR-Cas cargos using non-viral delivery systems has attracted increasing attention because the transient nature confers increased safety over viral delivery and allows repeat dosing. This project aims to address the current pain in mRNA-based CRISPR-Cas9 gene editing system by enhancing the protein production yield of delivered mRNA, increasing the efficiency of CRISPR-Cas9-based genome editing, and enabling safe and
		more efficient therapeutic efficacy that target extrahepatic tissues.
35	Dr Daniel Teh Boon Loong	Interdisciplinary Optogenetic in Eye and Brain
36	danielteh@nus.edu.sg Department of Ophthalmology	We are utilizing optogenetics and phototherapeutics to identify the role of membrane excitability in the onset of aged-related degenerative diseases of the brain and eye. This include ultra-sensitive channelrhodopsin and photodynamic therapy as therapeutics of age-related macular degeneration, glaucoma, neurodegenerative diseases and peripheral nervous system such as neuromuscular junction. Our laboratory is inviting students to test out some of our wireless optogenetic and photodynamic therapy technologies for chronic application in in vitro and in vivo model. <i>Domain(s): Interdisciplinary technologies in neuroscience and vision</i> <i>research (optogenetics & photodynamic therapy)</i>
36	<u>Dr Chen Jinmiao</u>	Investigate tumour complexity and drug response of peripheral T-cell lymphoma with subcellular resolution
	micchenj@nus.edu.sg	spatial multi-omics
	Department of Microbiology & Immunology	Lymphoma is currently the 5th and 6th commonest cancer for male and female, respectively in Singapore. Peripheral T- cell lymphoma (PTCL) represents an Asia-centric subgroup that accounts for 15% of all lymphoma diagnoses. PTCLs are highly heterogeneous, aggressive, and present significant treatment challenges. As PD-1 and PD-L1 expressions are detectable in both PTCL and immune cells within the tumour microenvironment, immune checkpoint inhibitors (ICIs) and

		related agents have been actively explored to treat PTCL over
		recent years. Studies on breast cancer and ovarian cancer
		have suggested that PARP inhibition (PARPi) can induce
		immunostimulatory micromilieu and its combination with
		ICIs displays significant synergistic activity8–10. At Singapore
		General Hospital, an ongoing clinical trial of anti-PD-L1
		durvalumab in combination of PARPi olaparib has showed an
		encouraging response rate in PTCL patients. Working with
		clinician scientists Dr Jason Chan and Dr Choon Kiat Ong, we
		will dissect the tumour heterogeneity and tumour-immune
		crosstalk in PTCL responders and non-responders using the
		latest subcellular resolution spatial multi-omics technologies,
		aiming to uncover the cellular and molecular mechanisms
		underlying different treatment outcomes. We will collect
		both fresh and fixed tumour specimens from 25 PCTL
		patients before drug treatment. With the fresh samples, we
		will use Stereo-seq or CosMx 1 multi-omics technology to
		obtain spatially resolved co-profiling of high-plex protein and
		whole transcriptome from the same tissue slice11. For the
		fixed samples, we will acquire serial sections and profile
		protein and gene expressions on adjacent tissue slices using
		the latest CosMx1 or MERSCOPE3 technologies. We will
		analyse the data with our AI analytical platform.
		Domain(s): Vaccinology and Immunotherapy
37	A/Prof Chan Shiao-yng	Investigating the impact of inositol on uterine contractility
		in postpartum haemorrhage
	obgchan@nus.edu.sg	
		Postpartum haemorrhage (PPH) is a leading cause of
	Department of Obstetrics &	maternal morbidity and mortality, accounting for >100,000
	Gynaecology	deaths per annum globally. The most common aetiology is
		impaired uterine contraction after childbirth. Although
		uterotonic agents to enhance uterine contraction are
		routinely give post-delivery, they do not completely prevent
		PPH. Therefore, complementary approaches are needed to
		address PPH more effectively. Clinical studies suggest that
		inositol may be one such candidate to reduce postpartum
		blood loss. Inositols belong to a class of nutraceuticals and
		the myo-inositol isomer demonstrates promising effects in
		promoting uterine contractility in an animal model. However,
		the mechanisms by which myo-inositol affects uterine
		contractility remains unclear. The candidate will investigate
		the effect of myo-inositol on uterine contractility using a
		variety of techniques including in vitro cultures, functional
		assays and molecular biology.
		Domain(s): Drug Discovery and Development, Nutraceuticals
38	A/Prof Vincent TK Chow	Investigation of antiviral and host-directed combination
		therapy against coronavirus infection

r		
	micctk@nus.edu.sg	
	Department of Microbiology & Immunology	This project aims to evaluate the efficacy and synergism of combinations of clinically approved drugs with antiviral activity against coronavirus infection. It will employ the mouse hepatitis virus (MHV) model of infection for analyzing these combination therapies, including optimization of drug concentrations and their mechanisms of action. <i>Domain(s): Infectious Diseases Management, Drug Discovery and</i> <i>Development</i>
39	A/Prof Dan Yock Young / Dr	Isolation and characterization of microbes from the human
	Adrian Low	gut
	<u>mdcdyy@nus.edu.sg</u> / <u>adlow@nus.edu.sg</u> Department of Medicine	The gastrointestinal tract is a habitat to a rich diversity of microbes that produce metabolites that affect the gut environment, and microbiota and may even induce host response. Deciphering the metabolic function and role of each microbe in vivo is challenging. Isolation of gut microbes
		allows the characterization of metabolic profiles of individual species or as a consortium. In our research, we are interested in microbes that produce 1) short-chain fatty acid particularly isovaleric acid and valeric acid, or 2) secondary bile acids. These compounds have been associated with diseased and healthy guts. The study is multidisciplinary and involves microbiological techniques, molecular techniques (DNA or RNA), and analytical chemistry. <i>Domain(s): Infectious Diseases Management, Applied Biomedicine</i>
40	Prof Gavin Smith	Molecular epidemiology and evolution of human influenza viruses
	gavin.smith@duke-	
	nus.edu.sg	Influenza viruses circulate year-round in Singapore, with two
	nus.edu.sg	Influenza viruses circulate year-round in Singapore, with two biennial peaks aligning with the winter seasons in the Southern and Northern hemispheres. During the COVID-19 pandemic, the global circulation of seasonal influenza viruses experienced an unprecedented halt, with almost no influenza activity for two years. However, since late 2022, human influenza viruses have re-emerged, causing a rise in influenza infections worldwide. Here we aim to investigate the shifts in genomic diversity that contribute to the occurrence of epidemics. Specifically, we will test the hypothesis that reduced levels of population immunity have led to the emergence of both advantageous and non-advantageous mutations within the viral genes. As the human population gradually regains immunity, these viruses are expected to face seasonal bottlenecks, which will lead to the elimination of non-advantageous mutations. The future circulation of seasonal influenza remains uncertain, creating an incentive

		of these viruses. We will examine how these alternations
		contribute to an increase in the diversification of lineages,
		vielding the emergence of novel antigenic variants.
		Domain(s): Infectious Diseases Management, Molecular
		epidemiology and evolution
41	Dr Alan Prem Kumar	New Therapeutic Strategy for Unmet Need in Neovascular
		Age-related Macular Degeneration (nAMD)
	apkumar@nus.edu.sg	
	apkumar@nus.edu.sg Department of Pharmacology	Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of incurable blindness worldwide. Current standard treatment involves monthly intravitreal injections of anti- vascular endothelial growth factor (VEGF) agents such as aflibercept (Eylea), ranibizumab (Lucentis) and brolucizumab (Beovu). However, the long-term repeated intravitreal injections can lead to complications and low patient compliance, as well as high financial burden for patients and the healthcare system. Notably, these drugs can only delay progression to blindness without providing cure to patients. Furthermore, about 30% of the patients are non- responsive to these treatments, while 15-20% of patients become resistant to treatment over time. Hence, new, ideally long-lasting, and minimally invasive, therapeutic strategies, are urgently needed for nAMD patients. Several studies have demonstrated the prominent roles of Src Family Kinases (SFKs) in retinal angiogenesis. Lyn kinase is a SFK member, and we have recently developed a new Lyn kinase-specific inhibitor (CHL-4); Patent: Kumar AP et al "COMPOUNDS FOR MODULATING SRC FAMILY KINASES AND USES THEREOF"
		[SG Patent Application No. 10202260299X, filed 2 December 2022], which possesses anti-angiogenic and anti-epithelial-to- mesenchymal transition (EMT) properties. Therefore, we hypothesize that CHL-4 targets an alternative pathway other than VEGF could be a novel therapeutic agent for nAMD.
10	Dr Chris Sham Lok To	Destiling genetic interactions in the human nothegen
42		Strontococcus proumonico
	miclts@nus.edu.sg	Streptococcus pneumoniae
	Department of Microbiology	function. Even in the simplest of colls like Escherichia colling Its
		do not know the role of about one-third of the genes
		Traditional approaches for studying gong function, such as
		nhenotyping knockout mutants, are time consuming and
		labour-intensive. To overcome these challonges, my
		laboratory developed high-throughout mothods to study
		aportic interactions, which halped us understand the
		function of these "genetic dark matters" in the ever-

		increasing number of sequenced genomes in public databases. Our preliminary results uncovered mechanisms by which cell envelope synthesis is coordinated and identified new factors required for central metabolic pathways. In this project, students will follow up on these findings by
		constructing deletion mutants of the human pathogen
		Streptococcus pneumoniae. Uncovering new gene functions will identify new drug targets that fuel the development of
		novel treatment options.
43	A/Prof Lim Hsiu Kim, Lina	Regulation of DNA sensing and recognition in cancer
	linalim@nus.edu.sg	The host immune system recognizes regions of viral and self RNA via specific recentors that activate host immune
	Department of Physiology	responses. Annexin-A1 is an immune response protein which
		has anti-viral properties. We and others believe that cancer
		cells and cancer cells themselves. Why the immune system
		does not react to these abundant DNAs/RNAs are unclear.
		regulate sensitivity of the immune cells and cancer cells to
		DNA. In fact, our published results show that RNA and DNA
		dependent on ANXA1. We therefore, plan to determine that
		ANXA1 enhances DNA and RNA sensing in immune cells and
		of how cancers evade immune recognition will bring us closer
		to finding treatments for cancer.
11	A/Prof Zhang Yongliang	Domain(s): Vaccinology and Immunotherapy Regulatory role of DUSPA in capper and anti-capper
		immunity
	miczy@nus.edu.sg	
	Department of Microhiology	Our study on a molecule known as DUSP4 showed that it
	& Immunology	infection and in the development of cancer such as colorectal
		cancer. Interestingly, we found that this molecule functions
		as a tumor suppressor mainly through its regulation of the
		cancer immunity is unclear. This project aims to investigate
		the function of DUSP4 in the pathogenesis of liver cancer by
		focusing on both the cancer cells and the immune cells in
		tumor microenvironment. Knowledge gained from this project will elucidate the regulatory function of DUSP4 in
		liver cancer development and anti-cancer immunity which
		will help to target this molecule for development of anti-
		cancer therapies.
l	1	

45	Dr Alan Prem Kumar	Targeting Protein Tyrosine Kinase 6 and Replication Stress
		Response to Enhance Immunotherapy Response in Ovarian
	apkumar@nus.edu.sg	Cancer
	Department of Pharmacology	Protein Tyrosine Kinase 6 (PTK6) is aberrantly expressed in
		many cancers and is associated with poor prognosis. Its
		expression is also significantly elevated across all ovarian
		cancer subtypes. PTK6 has been shown to have multiple
		oncogenic roles in other cancers but its roles in ovarian
		cancer remain unclear. Our preliminary findings identified a
		novel link between PTK6 and the DDR network in ovarian
		cancer. PTK6 depletion in ovarian cancer cells impaired their
		ability to repair DNA damage induced by cisplatin, a current
		standard-of-care chemotherapy drug, thus increasing their
		sensitivity to cisplatin. Furthermore, PTK6-depleted ovarian
		cancer cells exhibited reduced nuclear accumulation of
		Replication Protein A 32 (RPA32) in response to cisplatin-
		induced damage and were thus unable to repair the DNA
		damage. This suggests that PTK6 might function within the
		replication stress response (RSR) pathway. Additionally, PTK6
		depletion in ovarian cancer cells resulted in an upregulation
		of immune checkpoint protein PD-L1 expression, which was
		further enhanced by cisplatin treatment. Therefore, we
		hypothesize that PTK6 mediates resistance to platinum
		chemotherapy through the RSR pathway in ovarian cancer.
		Given that DDR-targeted therapies have significantly
		improved the efficacy of Immune Checkpoint Inhibitors (ICI)
		in ovarian cancer patients in several clinical trials, we also
		hypothesize that PTK6 inhibition with/without cisplatin could
		be a viable strategy to improve ovarian cancer patient
		response to ICI therapy, targeting PD-L1.
		Domain(s): Vaccinology and Immunotherapy
46	Dr Ding Lingwen	Targeting RNA exonuclease XRN1 to potentiate immune
		checkpoint blockade therapy
	patdl@nus.edu.sg	
		The remarkable achievement of immune checkpoint
	Department of Pathology	blockade antibodies has altered the therapeutic landscape of
		many types of cancer. However, the response rate is
		relatively low (20-30% in melanoma and even lower in other
		types of cancer) and only a traction of patients can benefit
		rom the treatment. Therefore, comprehensively
		controlling the officiency of immunotherapy is an urgent
		nood We recently identified covered you genes (LNK SETDR1
		and YRN1 atc.) regulating the response of immune therapy
		using murine melanoma models. In this study, we will focus

		on the most likely druggable target we identified, RNA
		exonuclease XRN1.
		Specific Aims & Hypothesis: XRN1 regulates aberrant-RNA
		mediated interferon (IFN) signaling and innate immune
		response; therefore, inhibiting XRN1 can potentially enhance
		the response of immunotherapy. Aim 1 To examine whether
		our finding of role of XRN1 in potentiating immunotherapy in
		melanoma models can be extend to other major cancers
		which are currently been treated with anti-PD1 antibody. Aim
		2 To identify the target RNAs which are degraded by XRN1;
		and to elucidate mechanism of how downstream sensors
		recognize accumulated aberrant-RNA and activate anti-viral
		IFN signaling. Activated downstream RNA sensors will be
		systematically identified using a small customized CRISPR
		library. Rescue experiments will be conducted in XRN1
		silenced cells to examine whether knockdown of the
		identified sensors can abolish the aberrant RNA induced IFN
		signaling. We will also examine whether XRN1 silencing
		enhances the antigens/neoantigens presentation and T cell
		response. Aim 3 Potential XRN1 inhibitors will by identified
		by using small molecule library screening, and their potential
		therapeutic effect will be evaluated.
		Domain(s): Vaccinology and Immunotherapy, Drug Discovery and
		Development
47	A/Prof Nguyen Nam Long	Targeting sphingosine-1-phosphate transporters for
		treatment of inflammatory diseases
	bchnnl@nus.edu.sg	
		Sphingosine-1-phosphate (S1P) is a potent signaling lipid
	Department of Biochemistry	which exerts its activity via activation of 5 different G-protein
		coupled receptors designated as S1PR1-5. Blood sphingosine-
		1-phosphate (S1P) is highly supplied by erythrocytes and
		platelets. However, there are specific S1P sources that
		regulate delicate biological processes such as lymphocyte exit
		from lymph nodes and tissues. The Spinster Homolog Protein
		2 (Spns2) is responsible for S1P production in lymphatic
		vessels to regulate lymphocyte exit. Inhibition of Spns2
		reduces blood lymphocytes that is beneficial in inflammatory
		conditions such as colon cancers, multiple sclerosis, and
		arthritis. In this project, student will study the roles of Spns2
		in regulation of immune cell egress in response to intestinal
		Inflammations. The goals of this study are to evaluate
		whether Sphs2 can be used as a target for development of
		arugs.
10	Prof Antonia Partalatti	The secretaria of HDV and HBV specific T calls in HBV (UDV)
40	FIOR AIRONIO BELOIELLI	The secretoine of nov and nov-specific i cells in nov/nov
	antonio@duke-nus.edu.sg	co-infected infected individuals

		Hepatitis Delta virus (HDV), the only known viroid that infects
	Duke-NUS Medical School	humans, requires the presence of HBV to complete its
		infection cycle. Most patients with HBV-HDV co-infection
		experience a more severe clinical course of chronic hepatitis
		with limited therapeutic options.
		Knowledge of the profile of HDV and HBV-specific T cell
		response in patients and in individuals who have been able to
		clear HDV are scarce. We propose here to characterize HBV
		and HDV-specific T cell response utilizing a novel cytokine
		secretion method recently develop for the analysis of SARS-
		CoV-2 specific T cells
		Pool of peptides covering HBV and HDV proteins will be
		utilized to directly stimulate whole blood of HDV-HBV co-
		infected patients, healthy controls and individuals who
		control HDV infection. Cytokines will be analyzed after
		peptide pools stimulation to understand the pattern of
		cytokines (secretome) release by the HBV and HDV-specific T
		cells. Conventional T cell assay will then be used to define the
		T cell population able to secrete the different cytokines.
		The study will provide novel knowledge about the antiviral
		cellular immune profile triggered by HDV and its impact on
		HBV-specific T cell response.
		Domain(s): Infectious Diseases Management
10	Dr Cui lianzhou	Line we will be a the line device a line we we have been inverted by the
49	DI CUI JIAIIZIIOU	Unravelling the Underlying immune wiechanisms, Drug
49	<u>Di Cul Jianzilou</u>	Response, and Vaccine Response in Influenza Infection
45	<u>ciz@nus.edu.sg</u>	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches
43	<u>ciz@nus.edu.sg</u>	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches
43	<u>ciz@nus.edu.sg</u> Medicine Dean's Office-	Influenza remains a significant global health threat, causing
43	<u>ciz@nus.edu.sg</u> Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed
43	<u>ciz@nus.edu.sg</u> Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed
43	<u>ciz@nus.edu.sg</u> Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions.
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq. single-cell
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies.
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies, students can aim to:
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies, students can aim to: 1. Investigate the Transcriptional Landscape: Explore the
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	 Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies, students can aim to: Investigate the Transcriptional Landscape: Explore the transcriptional landscape of host immune responses
43	ciz@nus.edu.sg Medicine Dean's Office- Immunology Translational Research Programme	 Nraveling the Underlying immune Mechanisms, Drug Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies, students can aim to: Investigate the Transcriptional Landscape: Explore the transcriptional landscape of host immune responses during influenza infection, drug response, and vaccination
43	<u>ciz@nus.edu.sg</u> Medicine Dean's Office- Immunology Translational Research Programme	 Nraveling the Underlying immune Mechanisms, Drug Response, and Vaccine Response in Influenza Infection Using Multi-omics and AI Approaches Influenza remains a significant global health threat, causing substantial morbidity and mortality annually. Understanding the complex interplay between the host immune system, influenza virus, and therapeutic interventions, including antiviral drugs and vaccines, is crucial for developing effective strategies to combat influenza. Our previous study revealed that influenza infection can cause distinct immune responses in different immune cell types, suggesting that the detailed underlying mechanisms need further study, especially under different drug treatments and vaccine conditions. By analysing publicly available bulk RNA-seq, single-cell sequencing, and spatial transcriptomics datasets and following AI approaches and partial validation studies, students can aim to: 1. Investigate the Transcriptional Landscape: Explore the transcriptional landscape of host immune responses during influenza infection, drug response, and vaccination using bulk RNA-seq, single-cell sequencing, and other

		 Identify Key Immune Components: Identify key immune- related genes, pathways, and cell types involved in influenza pathogenesis, drug response, and vaccine response. Characterize Spatial Immune Responses: Characterize the spatial distribution and cell type-specific immune responses in influenza-infected tissues treated with drugs and vaccines using spatial transcriptomics. Develop Predictive Models: Develop machine learning models to predict the efficacy of antiviral drugs and vaccines in influenza infection based on multi-omics data. Identify Novel Therapeutic Targets: Utilize AI-driven approaches to identify potential novel therapeutic targets and compounds for the provention and treatment of
		 and compounds for the prevention and treatment of influenza. Validate Predictions Experimentally: Validate the predictions of machine learning models and AI-driven approaches through experimental studies, including vaccine immunogenicity and efficacy assessments (depending on time). The insights gained from this project will contribute to the development of more effective and targeted strategies for the prevention and treatment of influenza, ultimately improving public health outcomes.
50	Prof Andrea Britta Maier a.maier@nus.edu.sg	Unveiling Metabolic Signatures: Nicotinamide Adenine Dinucleotide Levels In The SG90 Longitudinal Study Of Successful Aging
	Department of Medicine	Nicotinamide adenine dinucleotide (NAD) is a coenzyme that plays a central role in various biochemical reactions within cells, including those involved in energy metabolism, DNA repair, and maintaining the balance between oxidative stress and antioxidant defences. Blood NAD concentration declines with chronological age in animals and humans. This decline accelerates cellular aging and contributes to the development of various aging-related diseases. The SG90 Longevity Cohort is a longitudinal study designed to assess the mechanisms underlying healthy aging and longevity of Singaporeans aged 90 years and above. In line with the objective of this endeavour, the present project aims to evaluate the basal levels of nicotinamide adenine dinucleotide (NAD) and its association with aging- related clinical outcomes within the members of this cohort. <i>Domain(s): Drug Discovery and Development, Applied Biomedicine</i>

51	<u>Dr Matthew Tay Zirui</u> <u>matthew tay@idlabs.a-</u> <u>star.edu.sg</u> Department of Biochemistry	Utilization of microfluidics for discovery of antibody-based therapeutics against viruses and antimicrobial-resistant organisms This project seeks to identify novel vaccine immunogens for combatting emerging and re-emerging infectious diseases. Droplet microfluidics is capable of enabling high-throughput functional studies of monoclonal antibodies. By analysing the targets of such protective antibodies, the antigenic targets conferring protective functional activity can be identified. This project will be conducted at the A*STAR ID Labs, within a multidisciplinary lab environment with lab expertise in bioengineering, virus biology, and antibody biology. <i>Domain(s): Vaccinology and Immunotherapy, Drug Discovery and Development</i>
52	A/Prof Lim Hsiu Kim, Lina linalim@nus.edu.sg Department of Physiology	Vaccination/preexposure to COVID19 and susceptibility to influenza The coronavirus disease 2019 (COVID-19) epidemic represents one of the most devastating pandemics in modern history. SARS-COV-2, the etiologic agent of COVID19 has now spread across the planet to 188 countries and devastated the global economy. In the response to the pandemic, countries have taken extreme measures to thwart the spread of the disease and multiple countries, (including Singapore) have closed their borders, created mask mandates and social distancing measures. Although retrospective analyses will no doubt assess the efficacy of various countries' response to this unprecedented event, one potential advantage of Singapore's approach to pandemic management has been the 'knock-on' effect it has had on other common respiratory pathogens such as influenza viruses. Influenza viruses infect millions of people each year and can result in severe or even fatal complications including pneumonia and respiratory distress syndrome. The Singapore Ministry of Health started influenza monitoring 40 years ago to monitor for possible outbreaks and to track influenza strains, and it is the first time since the start of the monitoring that there have been no cases of flu reported through the surveillance system for almost a year. In January 2020, 652 flu-like cases were sent in for analysis and 320 were flu positive (50%). In comparison, in January 2021, 200 flu-like cases were sent in and 0 were flu-positive. This project will study the interaction between influenza and
		coronaviruses preventing influenza infection These questions are critically important as influenza pandemics have

		historically had far more devastating impact than the current coronavirus pandemic especially among younger people. It is thus key to our understanding of current and future pandemics to determine if and how the influenza virus is
		going to reappear to cause the next pandemic.
53	A/Prof Justin Chu Jang Hann	Validating the role of Hedgebog signalling nathway as a
55		therapeutic target in viral infections
	miccih@nus.edu.sg	
		The COVID-19 pandemic has brought about an
	Department of Microbiology	unprecedented public health crisis worldwide. While
	& Immunology	treatments and vaccinations are now available for some
		viruses to prevent the exacerbation of viral diseases, many of
		the existing antiviral drugs are targeting against a viral factor
		for which viruses were known to acquire a resistance for
		quickly. The evolutionarily conserved hedgehog (HH)
		pathway has essential functions in embryonic development
		and tissue homeostasis. Aberrations in the HH signalling
		pathway have been well-studied in cancer, showing an
		increased cancer prevalence and mortality with HH signalling
		activation. Recently, accumulating evidence has shown that
		HH signalling is targeted by viruses to allow effective viral
		omorging role of HH signalling in viral infoctions, and evolved
		the notential of renurnosing small molecule drugs which are
		targeting HH signalling in the treatment of viral diseases. In
		this project, we will evaluate the drug repurposing potential
		of hedgehog inhibitors in virus infections through evaluating
		its antiviral efficacy and dissecting its mechanism in cell-
		based and in vivo studies.
		Domain(s): Drug Discovery and Development