Efficacy of a Noise-Induced Hearing Loss Prevention Education Programme in Group Exercise Instructors

ZOE TEO (A0119032U)
PROF WILLIAM MARTIN
Contents

- Background
- Aims
- Methods and Outcome Measures
- Results
 - Baseline measures
 - Baseline sound levels
 - Effectiveness of hearing loss prevention programme
- Discussions
- Future Studies
Background: Sound Recommendations

- Music not conventionally thought as noise source
- But noise in NIHL is **not** limited to unwanted sounds
- NIHL is irreversible but preventable
- Recommendations on sound limits by Singapore’s Workplace Safety and Health (Noise) Regulation 2011:

 85 dBA for 8 hours
 3-dB exchange rate
Background: Group Exercise

- Music is prevalent – sets the rhythm, enhances enjoyment, motivates participants, decreases sense of exertion, improves performance and endurance

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Average Sound levels (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach & Nie, 2014 (2009 – 2011)</td>
<td>Australia</td>
<td>89.7</td>
</tr>
<tr>
<td>Mirbod et al., 1994</td>
<td>Japan</td>
<td>93 to 96</td>
</tr>
<tr>
<td>Nassar, 2001</td>
<td>England</td>
<td>89 to 96</td>
</tr>
<tr>
<td>Palma et al., 2009</td>
<td>Brazil</td>
<td>95.9</td>
</tr>
<tr>
<td>Sa et al., 2014</td>
<td>Portugal</td>
<td>86.9</td>
</tr>
<tr>
<td>Yaremchuk & Kaczor, 1999</td>
<td>America</td>
<td>78 to 106</td>
</tr>
</tbody>
</table>
Aims

To measure knowledge, attitudes and behaviour of GXIs

To measure sound levels of GX classes conducted in Singapore

Determine the effectiveness of a NIHL prevention education programme on GXIs
Dangerous Decibels

- Established evidence-based intervention program
 - Proven effective for changing knowledge, attitudes and behaviour regarding sound exposure and appropriate use of hearing protective strategies among children and adults
 - (Martin et al. 2013; Reddy et al. 2013)
 - Modified for one-to-one presentation to GXIs
 - Examples unique to GX classes
 - Individual GXI’s class sound levels (baseline measures) used in educational presentation
Study Participants

- 21 participants
 - Intervention group: 10 GXIs
 - No-intervention group: 11 GXIs
- Participants taught pre-choreographed music-based GX classes of the following types
 - cardio workouts
 - weights-based workouts
 - dance workouts
 - stationary bike workouts
Outcome Measures

- Measure changes in **knowledge, attitudes, intended behaviour and self-reported behaviour**
 - Questionnaire-based evaluation tool
 - 18 knowledge questions, 4 attitude questions, 2 intended behavioural questions, 7 behavioural questions

- Measure **objective behavioural** changes
 - Dosimetry measurements to determine average sound levels during the classes (L_{avg}) in dBA
 - Microphone of dosimeter placed near/on stage at the front of GX studio
Outcome Measures

<table>
<thead>
<tr>
<th>Intervention</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Baseline Dosimetry Measurements</td>
<td>1. Baseline Questionnaire</td>
<td>1. Follow-up Dosimetry Measurements</td>
<td>2. Follow-up Questionnaire</td>
<td></td>
</tr>
</tbody>
</table>

- Timeline for participants were staggered
Baseline Measures

- No significant difference between both groups
- Knowledge – certain deficits
 - All did not know the physiology of NIHL
 - Majority did not know that sound exposure of ≥ 85 dBA for 8 hours can cause NIHL
 - Deficits in recognizing some sources of sounds that are typically able to damage the ears
- Attitudes
 - Class participants’ preferences most important
Baseline Measures

Median Scores

- Attitudes
- Intended Behaviour
- Behaviour
Baseline Sound Levels

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Average Sound levels (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach & Nie, 2014 (2009 – 2011)</td>
<td>Australia</td>
<td>89.7</td>
</tr>
<tr>
<td>Mirbod et al., 1994</td>
<td>Japan</td>
<td>93 to 96</td>
</tr>
<tr>
<td>Nassar, 2001</td>
<td>England</td>
<td>89 to 96</td>
</tr>
<tr>
<td>Palma et al., 2009</td>
<td>Brazil</td>
<td>95.9</td>
</tr>
<tr>
<td>Sa et al., 2014</td>
<td>Portugal</td>
<td>86.9</td>
</tr>
<tr>
<td>Yaremchuk & Kaczor, 1999</td>
<td>America</td>
<td>78 to 106</td>
</tr>
<tr>
<td>Current study</td>
<td>Singapore</td>
<td>96.3</td>
</tr>
</tbody>
</table>
Results

- Intervention group: compare baseline measurements with
 - Post-intervention (immediate improvements from DD)
 - 7-week follow-up (sustained improvements from DD)

- No-intervention group: compare baseline measurements with
 - 7-week follow-up (changes not resulting from DD)
Results: Knowledge

- **Intervention Group**
- **No-intervention Group**

- Baseline
- Post-intervention
- Follow-up

Number of correct responses vs. time:

- Green line (Intervention Group)
- Blue line (No-intervention Group)

Significance levels indicated by asterisks: **p < 0.01**
Results: Attitudes

- **Intervention Group**
- **No-intervention Group**

<table>
<thead>
<tr>
<th>Median Responses</th>
<th>Baseline</th>
<th>Post-intervention</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>
Results: Attitude A2

Median Score

- Intervention Group
- No-intervention Group

Baseline | Post-intervention | Follow-up

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

**
Results: Intended Behaviour

Median Responses

Baseline | Post-intervention | Follow-up

Intervention Group

No-intervention Group

* Indicates significant difference
Results: Behaviour

Median Responses

- **Intervention Group**
- **No-intervention Group**

Baseline | Follow-up
Results: Sound Levels

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Post-intervention</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>95</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>

- **Intervention Group**
- **No-intervention Group**
Results: Sound Levels

- **Sound Levels (dBA)**
 - Baseline
 - Post-intervention
 - Follow-up

- **Groups**
 - Responders \(n=4 \)
 - Non-responders \(n=5 \)
 - No-intervention Group \(n=11 \)

The diagram illustrates the change in sound levels across different intervention stages for each group.
Discussion

- Dangerous Decibels effective at improving knowledge
- Some improvements on attitudes and intended behaviour
- Limited effect on behaviour
 - Why? Socially accepted to use high intensity music in GX classes, perceived preferences of class participants, pressure from class participants to increase sound levels, lack of support from management
- But some effect in a subgroup
 - Both responders and non-responders showed similar improvements in attitudes and intended behaviour
 - Further studies to differentiate responders and non-responders
Cummulative Sound Exposure

- Full-time GXIs
 - 95.9 dBA for 19.5 hours per week
 - Equivalent annual exposure that is 805% of recommended exposure
 - > 8 years of exposure in 1 year

- Part-time GXIs
 - 97.0 dBA for 5.1 hours per week
 - Equivalent annual exposure that is 189% of recommended exposure
 - Nearly 2 years of exposure in 1 year

- A need for action to reduce sound levels used in GX classes
What’s next

- Random, controlled study
- Longer interval for follow-up measurements
- Booster programmes
- Intervention on GXIs, class participants, managers of fitness institutions
 - GXIs’ selection of music based on perceived preferences of GX class participants
- Setup of GX studio and studio acoustics
- Evidence-based selection of music
References

time for questions